Published by
Stanford Medicine

Cancer, Research, Stanford News, Surgery

Chemistry technique improves cancer surgery

Chemistry technique improves cancer surgery

mass spectrometer

For many cancers of the stomach and intestinal tract, removing the tumor is the best way of treating a patient. The problem is that the cancerous cells don’t necessarily look any different from the normal cells. I wrote recently about a new technique to pick out those cancerous cells and help surgeons completely remove the tumor.

What’s fun about this story is that the idea started with a chemist, Livia Eberlin, PhD, who’s a post-doc in lab of chemistry professor Richard Zare, PhD. Zare is a member of Stanford’s Bio-X and from that has experience working with colleagues across campus. He suggested to Eberlin that she find a surgeon who would be willing to collaborate with her and test her approach to identifying the cancerous cells.

Eberlin knew that surgeons rely on pathologists during a surgery to help them figure out if they’ve removed the entire tumor, but the initial results aren’t always accurate. In some cases, pathologists find out days later, when results of a slower, more accurate test are complete, that the patient might need to come back for another surgery to remove more tissue.

Eberlin called up surgeon George Poultsides, MD, to see if he’d like to collaborate on her idea. As I wrote in my piece:

Eberlin’s expertise is in mass spectrometry, a tool not commonly used in a hospital setting. It takes a sample in one end, turns the molecules into charged particles, then detects how long it takes each charged molecule in that sample to migrate down a vacuum tube. The result is a jagged mountain range of tens of thousands of peaks, each representing a single chemical in the sample. The height of the peak indicates how much of that chemical the sample contained.

The idea was that maybe some of those peaks would be different in tissue samples that had cancerous cells versus those that didn’t. If it worked, this mass spectrometry approach might end up being more accurate than the approach being used now.

It took a team of statisticians, pathologists, surgeons and chemists to develop and test Eberlin’s idea. In the end, their approach seemed to be more accurate than what’s being used now. They are going to try their approach on a larger group of stomach cancers and in other cancers to see if it can help improve the odds of completely removing all cancerous cells during surgery.

Previously: Good-bye cancer, good-bye stomach: A survivor shares her tale
Photo – of Livia Eberlin, PhD, at a mass spectrometer used to identify cancerous cells in tissue samples – by L.A. Cicero

Comment


Please read our comments policy before posting

Stanford Medicine Resources: