Published by
Stanford Medicine

Neuroscience, Research, Stanford News

Elastic for floppy nerves

Elastic for floppy nerves

13545-touch_shutterstockHere’s something that was news to me: scientists don’t actually know how we sense touch. They know a lot about the neurons that send signals to the brain when you, say, touch your keyboard. But that initial sensation as the finger hits a key, when the skin is lightly depressed, what triggers the nerve to know the finger has touched something? That’s not known.

I wrote about some work this week from the Stanford Bio-X team of Miriam Goodman, PhD, and Alex Dunn, PhD, who work on this problem. A post doctoral fellow working in their labs, Michael Krieg, PhD, was looking into mechanical properties of the nerves that sense touch. One thing led to another, scientifically speaking, and eventually he found a matrix of proteins in these nerves that are not only involved in transmitting the signal of touch, but also seem to keep nerves resilient.

Dunn used socks to describe the difference between nerves that had this protein matrix, called spectrin, and those that didn’t. “When we looked at bending we realized that this looked a lot like an old sock. It looked loose and floppy,” he said. “We thought maybe what’s going on is the spectrin is acting like elastic.”

There’s more in the story about some cool measurements Krieg made into just how much tension the spectrin matrix puts on the cell. (How do you measure 1/1,000,000,000,000 of an apple anyway?)

Comment


Please read our comments policy before posting

Stanford Medicine Resources: