Published by
Stanford Medicine

Author

Neuroscience, Research, Stanford News

Building a bridge between education and neuroscience

Building a bridge between education and neuroscience

3537327425_d0c519ed1e_zIt wasn’t long ago that my kids could barely identify all the letters in the alphabet and now I have to yell at them to put down books and eat dinner. That transition, from identifying symbols to learning how to interpret them in math and reading, is something that involves creating new pathways in the brain.

Neuroscientists have long known that those changes must be taking place in the brain, but only recently has brain imaging been good enough to reveal where and how those changes are taking place. With that advance, neuroscientists and faculty in the School of Education are now starting to work together to better understand the changes and also come up with ways of using what’s learned in neuroscience to develop ways of helping kids who fall behind.

I recently wrote about a new education professor, Bruce McCandliss, PhD, who is pulling together the interdisciplinary team of faculty from across Stanford to build the educational neuroscience program here. From my story:

In one set of experiments, McCandliss used a type of brain imaging that reveals connections or tracts of neurons to look at the brains of kids who were good readers and others who showed signs of dyslexia. He found that the kids who were better readers had stronger brain connections in that region.

“There is a profound relationship between the way a person’s brain is organized and how well that person masters abstract intellectual skills, such as reading or mathematics,” he said.

In a follow-up study, he and a team that included Allan Reiss, the Howard C. Robbins Professor of Psychiatry and Behavioral Sciences and professor of radiology, found that kids with dyslexia who activate a particular brain region when trying to read went on to make much greater improvements in their reading ability. Kids who did not activate that region made very little reading gain after the age of 14.

“The hope is that by understanding the nature of these differences we might be able to tailor interventions for those individuals,” McCandliss said.

The people I talked with for my story all said that we have many years to go before discoveries made in the lab start showing up as personalized learning in the classroom. Still, it’s nice to think that some of the kids who are struggling with reading or math might one day be able to get help that’s based on what’s actually known about learning in the brain.

Previously: Learning how we learn to read, Study shows brain scans could help identify dyslexia in children before they start to read and Stanford study furthers understanding of reading disorders
Photo by John Morgan

History, Neuroscience, Research, Science, Stanford News

Illustration from 1881 resolves century-old brain controversy

Illustration from 1881 resolves century-old brain controversy

Figure2_WernickeThese days, a person can get through graduate school in the sciences practically without touching a physical publication. Most journals are available online going back decades. So it was a bit unusual when graduate student Jason Yeatman and postdoctoral scholar Kevin Weiner found themselves in the basement of Lane Medical Library trying to get to the bottom of a medical mystery.

It all started when Yeatman found a nerve pathway in brain images he’d taken as part of his work studying brain changes as kids learn to read.  This pathway didn’t appear anywhere in the available literature. He and Weiner became curious how this pathway – which clearly showed up in their work – could have escaped the notice of previous neuroscientists.

Their curiosity eventually led them back to an 1881 publication, still available in the basement of Lane Medical Library, where Carl Wernicke, MD, described identifying this brain pathway. Weier said, “That was a really cool experience that most people don’t have anymore, when you have to check your belongings at the door because the book you are about to look at is worth thousands of dollars per page. You are literally smelling 100 year-old ink as you find the images you have been searching for.”

Wernicke’s discovery contradicted theories by the eminent neuroanatomist at the time, Theodor Meynert, MD. I describe the controversy that led to this pathway expulsion from the literature in this Stanford News story:

Meynert strongly believed that all of the brain’s association pathways run from front to back – horizontal. This pathway, which Wernicke had called the vertical occipital fasciculus, or VOF, ran vertically. Although Yeatman and Weiner found references to the VOF under a variety of different names in texts published for about 30 years after Wernicke’s original discovery, Meynert never accepted the VOF and references to it became contentious before eventually disappearing entirely from the literature.

The group, whose work was published this week in the Proceedings of the National Academy of Sciences, says this was all more than just an exercise in curiosity. Psychologist Brian Wandell, PhD, in whose lab Yeatman was working, says it also shows the value of modern publishing methods, where making data available means scientists worldwide can try to reproduce results. He says it’s now less likely that a dispute could lead to a discovery being lost to history.

Image courtesy of PNAS

Ebola, In the News, Myths, Science

The slippery slope toward “a dangerous dependence on facts”

The slippery slope toward "a dangerous dependence on facts"

220px-Sputnik_asmThe ever-funny Andy Borowitz has written in The New Yorker about a previously unreported challenge in the fight against Ebola: It might make Americans believe in science. He writes:

In interviews conducted across the nation, leading anti-science activists expressed their concern that the American people, wracked with anxiety over the possible spread of the virus, might desperately look to science to save the day.

“It’s a very human reaction,” said Harland Dorrinson, a prominent anti-science activist from Springfield, Missouri. “If you put them under enough stress, perfectly rational people will panic and start believing in science.”

For someone who left science to become a writer specifically to help explain science to the public, this piece is both funny and also so very not funny at the same time. Almost 20 years after I put down my pipette, Americans are, if anything, less willing to let science guide their health, energy, or environmental decisions than they were back when I started – thus the humor in Borowitz’ piece.

All of this makes me wonder if I could have spared myself several decades of worrying about clever analogies, agonizing about transitions, and racing the clock to make deadlines and done something less stressful with my life. Something fulfilling. Something where at the end of the day, my work would help people live happier, healthier lives rather than producing something people will ignore if it doesn’t fit their ideology.

Matthew Nisbet and Dietram Scheufele have written a number of articles about science communication and its effects on public perception of science. In the American Journal of Botony they write, “Often when the relationship between science and society breaks down, science illiteracy is typically blamed, the absence of quality science coverage is bemoaned, and there is a call put out for ‘more Carl Sagans.’”

In a nutshell, that sums up my career switch. I bemoaned the absence of quality science coverage and fully intended to fill that gap.

Then, they go on to shatter my reasons for writing by pointing out that at a period of time when the public’s regard for science was at it’s highest – soon after the Sputnik launch – science literacy was abysmal. In one survey at the time, just 12 percent of people understood the scientific method, yet 90 percent of people believed that science was making their lives better.

What that survey suggests is that even a scientific challenge like Ebola is unlikely to push Americans to be better educated about science. But perhaps with the perfect transition, or really outstanding analogy, those same scientifically illiterate Americans can be convinced that science is making life better and – I’m really dreaming here -should be funded?

If yes, maybe Borowitz’ fictional anti-science advocate will be proved right, and we will head down that slippery slope “in which a belief in science leads to a belief in math, which in turn fosters a dangerous dependence on facts.” One can hope!

Previously: Scientist: Just because someone’s on TV doesn’t mean they’re an expert

Aging, Neuroscience, Stanford News, Stroke, Videos

Stanford expert responds to questions about brain repair and the future of neuroscience

Stanford expert responds to questions about brain repair and the future of neuroscience

One cool thing about being at Stanford is access to really, really smart people. Case in point, I get to work with William Newsome, PhD, who, in addition to doing really interesting neuroscience research, co-leads the group that made recommendations to the national BRAIN Initiative, and also directs the new Stanford Neurosciences Institute. He has a lot of insight into the state of neuroscience, where the field is headed, and what challenges scientists face in trying to better understand the brain and develop new therapies.

Newsome recently participated in an Open Office Hours, in which Stanford faculty take questions through Facebook, essentially opening their office doors to anyone with questions. He later recorded answers to those questions in the video above.

In addition to the full- length video, we’ve been posting short excerpts on Facebook. In this clip, Newsome discusses the dynamic nature of our brain’s connections. As he explains, the brain can switch connectivity to let us have one set of behaviors with our boss and another with our spouse.

In today’s installment, Newsome discusses efforts to repair nerves that are damaged in stroke, spinal cord injuries, traumatic brain injuries or other conditions. Stroke is of particular interest right now – the Neurosciences Institute that Newsome leads recently announced the creation of an interdisciplinary consortium at Stanford focused on stroke as one of their Big Ideas in Neuroscience.

In that segment, Newsome points out that nerves of our arms or legs, the so-called peripheral nervous system, can regrow if they get damaged. If you cut your finger, the nerves regrow. If you have a stroke or damage your spinal cord, the nerves don’t regrow. Newsome said:

What’s the difference between the central nervous system and the peripheral nervous system such that the central nervous system does not regrow most of the time yet the peripheral nervous system does? … When we get that knowledge the hope is that we’ll be able to set the conditions right for regrowth when there’s an injury and we’ll actually be able to help people recover function.

Previously: Deciphering “three pounds of goo” with Stanford neurobiologist Bill Newsome, Open Office Hours: Stanford neurobiologist taking your questions on brain research, Neuroscientists dream big, come up with ideas for prosthetics, mental health, stroke and more, Co-leader of Obama’s BRAIN Initiative to direct Stanford’s interdisciplinary neuroscience institute and Brain’s gain: Stanford neuroscientist discusses two major new initiatives

Aging, Neuroscience, Research, Stanford News, Stroke

Drug helps old brains learn new tricks, and heal

Drug helps old brains learn new tricks, and heal

shatz_news

Our brains go through remarkably flexible periods in childhood when they can form new connections in a flash and retain information at a rate that leaves adults (or at least me) both impressed and also deeply jealous.

Now neurobiologist Carla Shatz, PhD, has developed a drug that at least in mice can briefly open that window for making new connections in the adult brain. It works as a sort of decoy, tricking other molecules in the cell into binding to it rather than to the “real” protein on the neuron’s surface. Without the bound molecules, the protein on the neuron’s surface releases its brake on synapse formation.

There are still a number of hurdles to overcome before the drug could work in people. The human version of the protein she studied is slightly different than the mouse version, and she had to inject the drug directly into the mouse brain. She would need to find a way of delivering the drug as a pill before it could be useful in people.

Despite those hurdles, the possibilities are exciting. From a story I wrote on the possible uses for such a drug, which she had tested in a form of blindness in mice:

This model that the team studied in mice directly applies to forms of blindness in people. Children who are born with cataracts need to have the problem repaired while the vision processing region of the brain is still able to form new connections with the eyes. “If the damage isn’t repaired early enough then it’s extremely difficult if not impossible to recover vision,” Shatz said.

If a version of the decoy protein could work in people, then kids born with cataracts in countries with limited access to surgery could potentially have their cataracts removed later, receive a drug, and be able to see. Similarly, the window could be briefly opened to help people recover from stroke or other conditions.

Previously: How villainous substance starts wrecking synapses long before clumping into Alzheimer’s plaques, “Pruning synapses” and other strides in Alzheimer’s research
Image, which shows neurons of the visual system in mice that have formed new connections, courtesy of the Shatz lab

Anesthesiology, Pain, Research, Stanford News

Miniature wireless device aids pain studies

Miniature wireless device aids pain studies

DSC_0053Here’s one thing I didn’t know: For every person who goes to the doctor to be treated for chronic pain, less than a half get their pain reduced even by half. I learned that from anesthesiologist David Clark, MD, who recently received a grant from Stanford Bio-X, which supports interdisciplinary teams working on biomedical problems, to improve those odds.

One of Clark’s collaborators is Scott Delp, PhD, who last spring developed a way of using light to activate and deactivate pain neurons in mice. To be clear, the nerves had to be genetically engineered to allow the light to work – not something that can currently be done in humans.

That work pointed to new ways of studying pain, but had a glitch. The light was delivered through fiber optic cables and the mice couldn’t behave normally in their cages. That’s where engineer Ada Poon, PhD, enters the picture. She’s been developing a variety of devices that work wirelessly in the body, and she’s now working on a wireless device to deliver the light to nerves in mice. Here’s what I wrote in an online story yesterday:

Coupling a wireless technology to optogenetics eliminates the wire and allows a mouse to move freely, use an exercise wheel and socialize. Clark said this combination will allow researchers to design experiments that more closely mirror a patient’s experience.

For example, Clark said that when he sees patients they don’t necessarily complain only about the pain. They complain about not wanting to see friends, not being able to go to work, or not being able to do activities they enjoy.

“What we will be able to look at is a more natural measure of pain relief,” Poon said. They could assess whether a treatment allows mice to return to normal activities by tallying time spent on an exercise wheel or socializing.

Clark went on to tell me the value of working in this team: “When you combine people with different skills you will come up with something with truly high impact.”

Previously: Using light to get muscles moving and Stanford researchers demonstrate feasibility of ultra-small, wirelessly powered cardiac device
Image courtesy of Ada Poon

Addiction, Bioengineering, Mental Health, Neuroscience, Stanford News, Stroke

Neuroscientists dream big, come up with ideas for prosthetics, mental health, stroke and more

Neuroscientists dream big, come up with ideas for prosthetics, mental health, stroke and more

lightbulbs

So there you are, surrounded by some of the smartest neuroscientists (and associated engineers, biologists, physicists, economists and lawyers) in the world, and you ask them to dream their biggest dreams. What could they achieve if money and time were no object?

That’s the question William Newsome, PhD, asked last year when he became director of the new Stanford Neurosciences Institute. The result is what he calls the Big Ideas in Neuroscience. Today the institute announced seven Big Ideas that will become a focus for the institute, each of which includes faculty from across Stanford schools and departments.

In my story about the Big Ideas,I quote Newsome:

The Big Ideas program scales up Stanford’s excellence in interdisciplinary collaboration and has resulted in genuinely new collaborations among faculty who in many cases didn’t even know each other prior to this process. I was extremely pleased with the energy and creativity that bubbled up from faculty during the Big Ideas proposal process. Now we want to empower these new teams to do breakthrough research at important interdisciplinary boundaries that are critical to neuroscience.

The Big Ideas are all pretty cool, but I find a few to be particularly fascinating.

One that I focus on in my story is a broad collaboration intended to extend what people like psychiatrist Robert Malenka, MD, PhD, and psychologist Brian Knutson, PhD, are learning about how the brain makes choices to improve policies for addiction and economics. Keith Humphreys, PhD, a psychiatry professor who has worked in addiction policy and is a frequent contributor to this blog, is working with this group to help them translate their basic research into policy.

Another group led by bioengineer Kwabena Boahen, PhD, and ophthalmologist E.J. Chichilnisky, PhD, are working to develop smarter prosthetics that interface with the brain. I spoke with Chichilnisky today, and he said his work develop a prosthetic retina is just the beginning. He envisions a world where we as people interface much more readily with machines.

Other groups are teaming up to take on stroke, degenerative diseases, and mental health disorders.

One thing that’s fun about working at Stanford is being able to talk with really smart people. It’s even more fun to see what happens when those smart people dream big. Now, they face the hard work of turning those dreams into reality.

Previously: This is your brain on a computer chip, Dinners spark neuroscience conversation, collaboration and Brain’s gain: Stanford neuroscientist discusses two major new initiatives
Photo by Sergey Nivens/Shutterstock

Neuroscience, NIH, Research, Stanford News

Federal BRAIN Initiative funds go to create better sensors for recording the brain’s activity

Federal BRAIN Initiative funds go to create better sensors for recording the brain's activity

Optical voltage sensorUpdated 10-2-14: A quote from Schnitzer was added to the post.

***

10-1-14: Yesterday the National Institutes of Health handed out the first $46 million in funding for the BRAIN Initiative, announced in 2013. Stanford got one of those awards, worth almost $1 million to develop improved ways of recording activity in the brain.

The award went to applied physicist Mark Schnitzer, PhD, and bioengineer Michael Lin, MD, PhD, to expand on work they published last year. The pair had each developed tiny sensors that could detect voltage changes within a neuron. These provided the first real-time view of a nerve’s activity. When I wrote about their initial work earlier this year I described how these probes could be used:

With these tools scientists can study how we learn, remember, navigate or any other activity that requires networks of nerves working together. The tools can also help scientists understand what happens when those processes don’t work properly, as in Alzheimer’s or Parkinson’s diseases, or other disorders of the brain.

The proteins could also be inserted in neurons in a lab dish. Scientists developing drugs, for example, could expose human nerves in a dish to a drug and watch in real time to see if the drug changes the way the nerve fires. If those neurons in the dish represent a disease, like Parkinson’s disease, a scientist could look for drugs that cause those cells to fire more normally.

The BRAIN initiative award will help the team develop better sensors, and also improve the technology for recording the signals. In a conversation, Lin told me that a brain signal lasts about 2-4 milliseconds. Any camera for recording that activity needs to record about 1,000 frames per second, and current cameras operate at about one tenth of that speed. Schnitzer has expertise in developing tiny cameras for recording biological activity and will be working to create a faster camera to pair with Lin’s improved sensors.

Schnitzer participated in a panel discussion at a White House Brain Conference held the same day the grants were announced. He said, “I think there are many important roles for engineering and new technology that will likely emerge in the BRAIN initiative… I expect the results will be profound by helping to unlock some of the central mysteries of brain function, by providing new tools and helping to lay the basis for conceptual foundations in our efforts to prevent and cure brain disease and brain disorders and also in harnessing some of the brain’s computational strategies for humanity’s own technological purposes.”

Previously: Thoughts light up with new Stanford-designed tool for studying the brainBold and game-changing” federal report calls for $4.5 billion in brain-research fundingNIH announces focus of funding for BRAIN initiative and New tool for reading brain activity of mice could advance study of neurodegenerative diseases
Image courtesy of Michael Lin

Events, Neuroscience, Stanford News

Open Office Hours: Stanford neurobiologist taking your questions on brain research

Open Office Hours: Stanford neurobiologist taking your questions on brain research

Newsome

Last year Stanford launched the new Stanford Neurosciences Institute, led by visionary neurobiologist William Newsome, PhD. Part of his job over the past year has been to inspire faculty to think beyond their own labs and to dream about what they could accomplish if they work together. He called this the Big Ideas in Neuroscience.

This week, Newsome will be taking questions about your Big Ideas (or Big Questions) in brain research as part of a Stanford Open Office Hours event on Facebook. Are you curious how we learn and remember? What technologies might allow us to peer into the brain and even manipulate its function? How a deeper understanding of the brain could influence public policy, education and the law? Go to the Facebook page for the event and submit your questions by tomorrow (Oct 1).

Previously: “Bold and game-changing” federal report calls for $4.5 billion in brain-research fundingDinners spark neuroscience conversation, collaborationBrain’s gain: Stanford neuroscientist discusses two major new initiatives and Co-leader of Obama’s BRAIN Initiative to direct Stanford’s interdisciplinary neuroscience institute
Photo from Stanford News Service

Neuroscience, Research, Stanford News, Stem Cells

Cellular padding could help stem cells repair injuries

Cellular padding could help stem cells repair injuries

The idea of using stem cells to heal injuries seems so obvious. If you have a spinal cord injury, why not inject some new cells that can replace the ones that are lost?

Unfortunately, the very act of injecting those cells is rife with trouble. The scraping as they move through the needle damages the cells and can even kill them. Then, once in the site of the injury, the cells can easily ooze away into other tissue, or die from the onslaught of chemicals in the injury.

Material scientists Sarah Heilshorn, PhD, is trying to help these cells with a type of gel that can protect and support them, allowing them to live long enough to possibly repair the injury. A grant from Stanford Bio-X, the pioneering interdisciplinary life sciences institute, is now helping Heilshorn and her colleagues, neurosurgeon Giles Plant, PhD, and chemical engineer Andrew Spakowitz, PhD, get the project off the ground.

In a story I wrote about the work, Heilshorn equates the gel to ketchup:

It’s pretty thick, but when you bang on the bottle the sauce flows smoothly through the neck, then firms back up on the plate – a process she calls self-healing. “We want our polymers to self-heal better than ketchup,” she said. “It flows a bit across the plate.”

Her goal is to develop a polymer that supports the cells when they are loaded in a syringe, but then flows freely through the needle, padding and protecting the cells, then firming up quickly when it reaches the site of injury. “We don’t want the cells to flow away,” she says.

These Seed grants from Bio-X have been credited as part of what has made the institute so successful in bringing together people from diverse disciplines to solve biomedical problems. “The seed grants are the special Bio-X glue that brings teams of faculty from all over the university to tackle complex problems in human health using new approaches,” said Carla Shatz, PhD, who directs Bio-X.

We’ll be writing about a few of the most exciting projects being funded with the recently announced 2014 Bio-X Seed grants over the next few weeks.

Previously: They said “Yes”: The attitude that defines Stanford Bio-X

Stanford Medicine Resources: