Published by
Stanford Medicine

Author

Applied Biotechnology, Bioengineering, Global Health, Microbiology, Science

The pied piper of cool science tools

The pied piper of cool science tools

Kid-scopeWhen Stanford bioengineer Manu Prakash, PhD, and his students set out to solve a challenging global health problem, the first order of business is to have fun.

“We’re a curiosity-driven lab,” says Prakash, as he sits in his office overflowing with toys, gadgets, seashells and insect exoskeletons.

In the last month, Prakash introduced two new cool science tools — a 50-cent paper microscope and a $5 programmable kid’s chemistry set. The response from fellow science lovers, compiled on this Storify page, has been amazing.

Already, 10,000 kids, teachers, health workers and small thinkers from around the globe have signed up to receive build-your-own-microscope kits. Thousands more have sent us e-mails describing the creative ways they’d use a microscope that they could carry around in their back pockets.

For the love of science, here are a few of these inspirational e-mails:

I would love to have one. I’m only in 6th grade but I love science. I hope to visit the moon one day. — Raul

I am an electrical engineer from Kenya and have never used a microscope in all my life. But what I would really like to do is to avail the foldscope to students in a primary school that I am involved in mentoring. This apart from hopefully inspiring them in the wonders of science, would enable the students see the structure of the mosquito proboscis, a malaria-spreading agent in this part of the world. I would also like to look at the roots of mangrove trees and see the structure that enables them to keep sea water salts out. — Macharia Wanyoike

This is brilliant! I am in science and nanotechnology education and my wish is for South African rural children, Namibia, Zimbabwe, Botswana to all have these microscopes! It will be amazing. — Professor Sanette Brits, University of Limpopo, South Africa

waterbearI am studying how magnetic fields at different frequencies affect water bears. They are very difficult to find and it would be great if I had a tool to help me find them that is  portable while searching for them. I have digital motic microscope phase contrast and darkfield microscopes but nothing portable. — Edward W. Verner (Water bear shown to the left.)

I could use it to check if patients have scabies. Or if I were visiting remote monasteries in the Himalayas where they have outbreaks. I’d definitely pack it. For myself I’d use it on nature walks. GREAT ACCOMPLISHMENT for mankind. Congratulations. — Linda Laueeano, RN

Hi! I am a high school student from South Korea. While I was searching for interesting project, I saw your video. It was very amazing and I can’t believe that only one dollar can save hundreds and thousands people who were suffering from malaria and other diseases that can be found by your “foldscope”. I really love to study about your project and I had already read your thesis. Truly, it was hard to understand everything, but I really tried hard and I discussed this issue for more than a week with my science club. We are group of 10 people and we are eager to do this project. Also I really appreciate you to do this wonderful thing for poor kids in many other countries. Thanks. — Joung Yeon Park

I am assisting a K-12 community school with creating a STEAM Innovation Knowledge HUB, as they are trying to move their Common Core Curriculum into a STEM to STEAM driven program. It would be great to receive several Foldscopes or be able to purchase. Please contact me ASAP. Congratulations on a great new support product and great innovation. Thank you, smile. — Dr. Dion N. Johnson, Wayne State University

Continue Reading »

Applied Biotechnology, Bioengineering, Global Health, Stanford News

Free DIY microscope kits to citizen scientists with inspiring project ideas

Free DIY microscope kits to citizen scientists with inspiring project ideas

foldscope-paper-microscope-620x406

Stanford bioengineer Manu Prakash, PhD, is giving away 10,000 build-your-own paper microscope kits to citizen scientists with the most inspiring ideas for things to do with this new invention.

This invention, called Foldscope, is a print-and-fold optical microscope that can be assembled from a flat sheet of paper. Although it costs less than a dollar in parts, it can magnify objects over 2,000 times and is small enough to fit in a pocket.

Prakash initiated The Ten Thousand Microscopes Project, funded by the Gordon and Betty Moore Foundation, as a way to open up the wonders of the microscopic world to future generations of scientists and engineers. Prakash, who entered and won science fairs as a child in India, clearly wishes that he had a tool like this when growing up.

“Many children around the world have never used a microscope, even in developed countries like the United States,” said Prakash. “A universal program providing a microscope for every child could foster deep interest in science at an early age.”

kid-sketches

Through this project, he and his team will assemble a crowd-sourced biology microscopy manual that includes examples of creative uses for his microscope, collected from the scientists, teachers, tinkerers, thinkers, hackers and kids who participate.

“So many times people use a tool for one specific purpose and don’t realize the rich potential for other uses,” said Prakash. “This online manual will inspire further explorations.”

To apply for a Foldscope kit, submit ideas on how you would use your microscope to signup (at) foldscope (dot) com. Recipients must pledge to document their experiments in a way that could be replicated by anyone. Submission details and sample proposals are posted at Foldscope.com. Kits will be shipped in August 2014 to the applicants with the best ideas.

“My dream is that someday, every kid will have a Foldscope in their back pocket,” said Prakash.

Previously: Stanford bioengineer develops a 50-cent paper microscope, Stanford microscope inventor featured on TED Talk, Stanford bioengineer developing an “Electric Band-Aid Worm Test and Stanford bioengineers create an ultra-low-cost oral cancer screening tool
Photos by TED and Prakash Lab

Applied Biotechnology, Bioengineering, Global Health, Stanford News, Videos

Stanford microscope inventor featured on TED Talk

Stanford microscope inventor featured on TED Talk

Earlier today I wrote about the 50-cent paper microscope developed by Stanford bioengineering professor Manu Prakash, PhD. You can now watch a video of him building and demonstrating the microscope on TED.com. This TED “Talk of Week” has already been viewed almost 300,000 times.

Prakash, who grew up in the mega-cities of India without a refrigerator, is a leader in the frugal design movement. His lab is currently developing a number of global health solutions, leveraging the cost savings of emerging manufacturing techniques such as 3D printers, laser cutters and conductive ink printing.

Previously: Stanford bioengineer develops a 50-cent paper microscope, Stanford bioengineer developing an “Electric Band-Aid Worm Test and Stanford bioengineers create an ultra-low-cost oral cancer screening tool

Applied Biotechnology, Bioengineering, Global Health, Stanford News, Videos

Stanford bioengineer develops a 50-cent paper microscope

Stanford bioengineer develops a 50-cent paper microscope

UPDATE: A second blog entry, including a link to Prakash’s TED talk on this topic, can be found here. And this entry discusses Prakash’s plans to give away 10,000 build-your-own paper microscope kits to citizen scientists with the most inspiring ideas for things to do with this new invention.

***

When Manu Prakash, PhD, wants to impress lab visitors with the durability of his Origami-based paper microscope, he throws it off a three-story balcony, stomps on it with his foot and dunks it into a water-filled beaker. Miraculously, it still works.

Even more amazing is that this microscope — a bookmark-sized piece of layered cardstock with a micro-lens — only costs about 50 cents in materials to make.

In the video posted above, you can see his “Foldscope” being built in just a few minutes, then used to project giant images of plant tissue on the wall of a dark room.

Prakash’s dream is that this ultra-low-cost microscope will someday be distributed widely to detect dangerous blood-borne diseases like malaria, African sleeping sickness, schistosomiasis and Chagas.

“I wanted to make the best possible disease-detection instrument that we could almost distribute for free,” said Prakash. “What came out of this project is what we call use-and-throw microscopy.”

The Foldscope can be assembled in minutes, includes no mechanical moving parts, packs in a flat configuration, is extremely rugged and can be incinerated after use to safely dispose of infectious biological samples. With minor design modifications, it can be used for bright-field, multi-fluorescence or projection microscopy.

One of the unique design features of the microscope is the use of inexpensive spherical lenses rather than the precision-ground curved glass lenses used in traditional microscopes. These poppy-seed-sized lenses were originally mass produced in various sizes as an abrasive grit that was thrown into industrial tumblers to knock the rough edges off metal parts. In the simplest configuration of the Foldscope, one 17-cent lens is press-fit into a small hole in the center of the slide-mounting platform. Some of his more sophisticated versions use multiple lenses and filters.

To use a Foldscope, a sample is mounted on a microscope slide and wedged between the paper layers of the microscope. With a thumb and forefinger grasping each end of the layered paper strip, a user holds the micro-lens close enough to one eye that eyebrows touch the paper. Focusing and locating a target object are achieved by flexing and sliding the paper platform with the thumb and fingers.

microbes

Because of the unique optical physics of a spherical lens held close to the eye, samples can be magnified up to 2,000 times. (To the right are two disease-causing microbes, Giardia lamblia and Leishmania donovani, photographed through a Foldscope.)

The Foldscope can be customized for the detection of specific organisms by adding various combinations of colored LED lights powered by a watch battery, sample stains and fluorescent filters. It can also be configured to project images on the wall of a dark room.

In addition, Prakash is passionate about mass-producing the Foldscope for educational purposes, to inspire children — our future scientists — to explore and learn from the microscopic world.

In a recent Stanford bioengineering course, Prakash used the Foldscope to teach students about the physics of microscopy. He had the entire class build their own Foldscope. Then teams wrote reports on microscopic observations or designed Foldscope accessories, such a smartphone camera attachment.

For more on Foldscope optics, a materials list and construction details, read Prakash’s technical paper.

Previously: Stanford bioengineer developing an “Electric Band-Aid Worm TestStanford bioengineers create an ultra-low-cost oral cancer screening tool,
Related: Prakash wins Gates grant for paper microscope development

Cardiovascular Medicine, Genetics, Health and Fitness, Men's Health, Stanford News

The ultramarathoner’s heart

The ultramarathoner's heart

Nuttall-trail 2-webThe manufacturer’s warranty on the human heart is about 100 years or 2.5 billion beats. But do ultra-long-distance runners void this warranty when they regularly run races of 50 to 100 miles?

This was the question at the top of my mind as I wrote a tall tale about Mike Nuttall, a visionary Silicon Valley product designer and an ultramarathoner with hereditary heart disease, featured in the cardiovascular health issue of Stanford Medicine. In 2010 he had a heart attack and a triple bypass operation. Then he went on to run one of the most challenging races on the planet.

Was this fearlessness or folly?

An ultramarathoner pushes a body to its outer limits. Bones and joints are pounded. Dehydration can upset the electrolyte system, the delicate balance of salts and fluids that regulates heart, nerve and muscle functions. The heart, the ultramarathoner of organs, goes into overdrive for about 24 hours. But above all, an ultramarathon tests the mind, as a runner strives to override the brain’s overwhelming signals of pain and fatigue.

In the story, there are plenty of opinions from friends and heart experts on the wisdom of Nuttall’s post-heart-attack decision. But I guess, in the end, what he did was personal and heartfelt.

Previously: Study reveals initial findings on health of most extreme runners, Euan Ashley, MD, on personalized medicine for heart disease and Mysteries of the heart: Stanford Medicine magazine answers cardiovascular questions
Photo by Bert Keely (Nuttall’s wingman)

Applied Biotechnology, Bioengineering, Cardiovascular Medicine, Stanford News, Technology

Heart devices get a mobile makeover

Heart devices get a mobile makeover

AUM-close-up-chest560

Emerging diagnostic heart devices are going mobile. And by leveraging advances in smartphones and sensors, they’re able to perform their functions better, faster and cheaper than traditional heart monitoring equipment.

For example, the CADence, shown above, detects blocked arteries from the surface of the chest by identifying the noisy signals of blood turbulence associated with blockages.

The Zio Patch, on the right, is a sensor that can be worn on the chest for up to 14 days to detect intermittent, irregular heartbeats, called arrhythmias. ZIO-150-90

Both of these amazing devices reveal the mysteries of the heart non invasively, and they provide more potentially life-saving heart data to physicians than conventional equipment.

Yet despite these advantages, adoption into the medical system has been slow.

In the new issue of Stanford Medicine magazine on cardiovascular health, I interview the entrepreneurs behind these inventions — the heart gadgeteers — and let them describe the hurdles that add years to the process of launching new medical devices into the marketplace.

Previously: Mysteries of the heart: Stanford Medicine magazine answers cardiovascular questions, New Johnson & Johnson CEO discusses medical device futures at Stanford eventStanford physician-entrepreneur discusses need to change FDA approval process and Is the United States losing ground as a leader of medical innovation?
Photos courtesy of AUM Cardiovascular, iRhythm Technologies

Global Health, Infectious Disease, Public Health, Research, Rural Health, Stanford News

Stanford bioengineer developing an “Electric Band-Aid Worm Test”

Stanford bioengineer developing an “Electric Band-Aid Worm Test”

uganda-kids“Those children are sitting on the graves of their siblings,” said a Ugandan colleague, in a tragic reminder of the impact of childhood diseases in rural Africa.

Stanford bioengineering professor Manu Prakash, PhD, took this picture two weeks ago while conducting clinical field evaluations of his lab’s various ultra-low-cost disease diagnostics inventions.

His latest project is an electromagnetic patch that non-invasively detects live parasitic worms in infected patients.

To help test this novel idea, Prakash and co-investigator Judy Sakanari, PhD, a research pathologist at the UC San Francisco School of Medicine, received a $100,000 Grand Challenges Explorations award from the Gates Foundation.

The first prototypes will be used to detect the worm that causes onchocerciasis, or “river blindness,” which afflicts approximately 37 million people in Africa, Central and South America, and Yemen. Transmitted through repeated bites of blackflies, it is a major cause of preventable blindness.

Current diagnostic methods require the use of expensive ultrasound equipment to determine whether parasitic worms are alive under the skin or inside lymph nodes. Prakash’s more frugal design consists of a Bandaid-sized patch embedded with a sensitive sensor that detects minute electrical changes when worms wiggle under the skin or form calcified cysts. He expects that the final device will cost less than $10 and will be easier to use in rural settings.

Prakash and Jim Cybulski, a Stanford mechanical engineering PhD student, were also working at several sites to clinically evaluate “Foldscope,” an inexpensive microscope made of folded paper that is being mass produced and used for diagnosing diseases like malaria, schistosomiasis, African sleeping sickness, tuberculosis and various filarial diseases in field conditions. Cybulski recently won a Global Health Equity Scholars Fellowship (NIH-funded) for field testing this device.

The magnitude of the malaria problem in Uganda, which has one of the highest rates of infected mosquitoes in the world, became crystal clear during their trip.

“There was one hut where we trapped 400 mosquitoes in one night,” said Prakash. “And some public health centers that we visited had almost 100 malaria cases per day, with mothers of large families bringing in at least one child a week for testing.”

He added, “Being in the field gives meaning to working in global health. It teaches you empathy, a driving force so strong that transforms ideas into actions.”

Prakash’s lab is also exploring how to develop “human capital” in these resource-constrained settings, a strategy that would generate more jobs and build the infrastructure to provide these services locally. “We are looking at various ways to bring appropriate tools and training to these young college graduates who don’t have much to do,” he said.

Previously: Is the worm turning? Early stages of schistosomiasis bladder infection charted, Compound clogs Plasmodium’s in-house garbage disposal, Using cell phone data to track and fight malaria and Image of the Week: Malaria developing
Photo by Manu Prakash

Bioengineering, Events, Research, Stanford News

Nobel Laureate Michael Levitt at press conference: “Science is a passion”

Nobel Laureate Michael Levitt at press conference: “Science is a passion”
Stanford President John Hennessy; Michael Levitt, PhD; Dean Lloyd Minor, MD,  Stanford School of Medicine; and Jennifer Widom, PhD, department chair, computer science.

Stanford President John Hennessy, PhD; Michael Levitt, PhD; Lloyd Minor, MD, dean of the School of Medicine; and Jennifer Widom, PhD, chair of computer science

“There actually are websites where people make predictions about who will get the Nobel Prize, and I’m happy to report I wasn’t on any of them,” said Stanford’s new Nobel Laureate Michael Levitt, PhD, who charmed the audience with his wit and humility, at a press conference held on campus earlier today.

Levitt explained how he started his groundbreaking work when he was a 20-year-old postdoctoral scholar in Cambridge, England. Working mostly from home with his newborn child amidst stacks of computer punch cards, he began building the foundational software algorithms that now allow researchers to simulate complex biological processes within the body.

“He was a computer hacker when that was a good thing to be,” said Stanford President John Hennessy, PhD.

At 66, it’s obvious that Levitt is still thrilled to go into work every day. “This week we actually made progress on three difficult problems,” he said. “It’s remarkable when you get to do what you like. You end up working with smart young people… who get younger every year.”

When asked about his heroes, he quoted the French-American sculptor Louise Bourgeois, who at 70 indignantly told someone at her Museum of Modern Art exhibit, “You think this is a retrospective? I’m just beginning.” Afterwards she used the exhibit proceeds to rent a Brooklyn warehouse and went on to create her most famous work, including a series of enormous bronze spiders.

“That’s kind of how I want to be,” said Levitt about his post-Nobel plans. “Science is a passion.”

The full press conference can be watched here.

Previously: No average morning for Nobel winner Michael Levitt, Nobel winner Michael Levitt’s work animates biological processes and Stanford’s Michael Levitt wins 2013 Nobel Prize in Chemistry
Photo by L.A. Cicero/Stanford News Service

Bioengineering, Genetics, Stanford News, Videos

Nobel winner Michael Levitt’s work animates biological processes

Nobel winner Michael Levitt’s work animates biological processes

Proteins control nearly all of life’s functions, but how they self-assemble or fold is an unsolved problem in biology. Understanding how folding goes awry could lead to cures for diseases such as Alzheimer’s and Parkinson’s, which are caused by protein misfolding.

One of the winners of the 2013 Nobel Prize in Chemistry, Michael Levitt, PhD, is an early pioneer in “computational biology,” the development of complex software algorithms that allow researchers to simulate and experiment with biological processes such as protein folding. In 1969, he realistically modeled tRNA, a helper molecule for building proteins inside the body. He also discovered the architectural patterns in proteins, devised a protocol for simulating how water interacts with proteins and designed the first simulations of humanized antibodies.

In this video, Levitt’s Stanford colleague, Vijay Pande, PhD, shows a simulation of protein folding, and explains why computational biology is important to the future of medicine. By modeling protein folding, Pande says, “We hope to get exquisite detail and information that you might not be able to get from experiments.”

Previously: Stanford’s Michael Levitt wins 2013 Nobel Prize in Chemistry

Neuroscience, Science, Stanford News

Discussing the brain in Spain: Nobel Laureate Thomas Südhof addresses the media

Discussing the brain in Spain: Nobel Laureate Thomas Südhof addresses the media

sudhof phone with sonStanford’s newest Nobel laureate – Thomas Südhof, MD – talked with reporters from around the world during a conference call from Baeza, Spain, earlier today. Among the topics discussed: the daunting challenges of understanding how the brain works.

“We should be a little more humble about this wonderful organ, the brain,” Südhof said, as he described how difficult it is to study a system where reactions occur in thousandths of a second.

Südhof believes his research into the basic underpinnings of brain functions may eventually allow us to understand why neurons and synapses die in Parkinson’s disease. His hypothesis is that Parkinson’s may be caused by broken chemical pathways that lead to a deficit of a protein that is like “an oil that makes sure that the wheel doesn’t squeak.” He’d like to understand these pathways better, to perhaps locate a point in the process where interventions might counteract the resulting degeneration of nerves.

He added, “Studying the brain’s trafficking of signals is absolutely crucial to understanding Autism and Alzheimer’s disease.”

When asked about the nation’s research environment, Sudhof expressed concerns about shrinking budgets and the erosion of societal ethics:

Western civilization is based on science and… our search for truth. There’s a significant percentage of the population that thinks the truth isn’t important. It worries the hell out of me. We need to fight for that [unbiased] information. It’s at the core at what our civilization stands for.

At the end of the conference, Südhof offered advice to college students embarking on their careers. “…Follow your passions and work that satisfies you, over the amount of money you can make,” he said. “I have met so many unhappy rich people.”

Previously: Stanford’s Thomas Südhof wins 2013 Nobel Prize in Medicine and Stanford’s newest Nobel winner on the prize: It’s an “incredibly beautiful” honor
Photo by Robert Malenka, MD, PhD

Stanford Medicine Resources: