Published by
Stanford Medicine

Author

Applied Biotechnology, Bioengineering, Science, Science Policy, Stanford News

Stanford microscope inventor invited to first White House Maker Faire

Stanford microscope inventor invited to first White House Maker Faire

Foldscope-adams-squareLast week assistant professor of bioengineering Manu Prakash, PhD, received a call he couldn’t refuse — an invitation to attend the first-ever White House Maker Faire, to show attendees how to build a 50-cent microscope out of laser-cut paper, plastic tape and a tiny glass bead.

At today’s event, Prakash will also demonstrate how he turned a toy music box into a $5 programmable microfluidic chemistry set that can be used for applications as diverse as testing water quality and science fair projects.

Maker Faires, started by Make magazine in 2006, are gatherings where do-it-yourself enthusiasts show off their homemade projects and teach others how to make things using new technologies such as 3D printers, laser cutters, and desktop machine tools.

President Obama is hosting the first-ever White House Maker Faire to celebrate our “Nation of Makers” and to help empower America’s students and entrepreneurs to invent the future.

Prakash, who grew up in the mega-cities of India without a refrigerator, is a leader in the frugal maker movement. At Stanford, he works with students from bioengineering, medicine, and Bio-X to reengineer expensive, complex health-related devices to make them better, faster and cheaper.

His team also focuses on developing affordable science tools to inspire global innovation. To that end, Prakash recently launched an educational initiative called the “10,000 Microscopes Project,” where build-your-own-microscope kits will be shipped to the first 10,000 people who pledge to share their microscope images and experiments in a free, online microscopy manual.

“I’m so happy that the White House is looking at ways to celebrate scientific curiosity and invention,” Prakash told me. “Many children around the world have never used a microscope, even in developed countries like the United States. A universal program providing a microscope for every child could foster deep interest in science at an early age.”

For more information on the White House Maker Faire and today’s National Day of Making, or to watch the event live, visit www.whitehouse.gov/makerfaire or follow #NationofMakers on Twitter.

Previously: The pied piper of cool science tools, Music box inspires a chemistry set for kids and scientists in developing countries, Free DIY microscope kits to citizen scientists with inspiring project ideas and Stanford bioengineer develops a 50-cent paper microscope
Photo, of Quinn Monahan trying out a paper microscope, by Amy Adams
Photo in featured entry box by Manu Prakash

Aging, Health and Fitness, Health Policy, Public Health, Stanford News

Moderate exercise program for older adults reduces mobility disability, study shows

Moderate exercise program for older adults reduces mobility disability, study shows

senior_dog_walk

A 20-minute walk each day could help older adults stay on their feet and out of wheelchairs longer, according to a multicenter study published in the Journal of the American Medical Association today and coordinated by the University of Florida.

Researchers showed that a daily program of moderate physical activity reduced the risk of mobility disability in older adults by 18 percent compared to those who did not exercise. They also found a 28-percent reduction in the permanent loss of the ability to walk unaided.

Mobility, defined in this study as the ability to walk without assistance for at least 400 meters or about a quarter mile, is critical for aging seniors to function independently. Loss of mobility can lead to higher hospitalization and institutionalization costs, and even early death.

“These results suggest the potential for structured physical activity as a feasible and effective intervention to reduce the burden of disability among vulnerable older persons, in spite of some functional decline in late life,” wrote the researchers.

“While people are aware of the benefits of physical activity, this study is the largest and longest duration randomized trial evaluating the effects of physical activity on mobility disability in older adults. It will provide the hard evidence needed to change health policy,” said Abby King, PhD, the lead investigator for the Stanford field center and a professor of health research and policy and of medicine.

For this study, 1,635 sedentary men and women, age 70 to 89, were recruited by eight field centers across the United States and followed for an average of 2.6 years. All participants were able to walk a quarter mile within 15 minutes but were at risk for losing that ability.

“These are the patients who physicians see every day. This is why this study is so important: It includes a population that is typically understudied,” said principal investigator Marco Pahor, MD, director of the University of Florida’s Institute on Aging.

During the study, participants were randomly assigned to one of two groups. The first group walked 150 minutes per week and did strength, flexibility and balance training. They were encouraged to stay on track with the program through weekly participation in two in-person exercise classes and several home-based physical activity sessions. The second group attended health education classes, including low-intensity stretching exercises.

King said one of the most important takeaways from the study was this: “It’s never too late to gain important benefits from increased physical activity.”

Study results are summarized in this JAMA Report video.

Previously: AAMC’s Health Equity Research Snapshot features Stanford project on virtual health advisers, Help from a virtual friend goes a long way in boosting older adults’ physical activity, Computer-generated phone calls shown to help inactive adults get – and keep – moving
Photo by hartcreations/iStock

Applied Biotechnology, Events, Infectious Disease, Research, Stanford News, Videos

Stanford microbiologist’s secret sauce for disease detection

Stanford microbiologist's secret sauce for disease detection

Last week, John Boothroyd, PhD, kicked off Stanford’s first Disease Detective lecture series with a fascinating tale about how his lab invented a simple biochemical “secret sauce” that revolutionized the detection of viral and bacterial infections like HIV, Hepatitis C and gonorrhea.

“It mostly started as a sketch on a piece of paper, then later became Gen-Probe’s core technology, which won them the 2004 National Medal of Technology,” explained Boothroyd, a Stanford professor of microbiology and immunology.

What Boothroyd invented, in collaboration with postdoctoral researchers James Burg and Philippe Pouletty, is called Transcription-Mediated Amplification.

Before this discovery, detecting a snippet of disease-specific DNA in a sample of cells was like finding a needle in a haystack. To increase a test’s accuracy, a lab technician would try to coax the target DNA into replicating itself through hours of tedious time-and- temperature-sensitive steps.

Boothroyd and his team’s new process consisted of a simple recipe of primers and enzymes that, after optimization by Gen-Probe, tricked a target snippet of DNA into automatically creating 10 billion copies of itself in less than an hour. This ultimately enabled the development of cheaper and faster disease tests.

In 2012 Boothroyd was ushered into the Stanford Inventor’s Hall of Fame because of this patent, which is among the top-ten revenue-generating inventions Stanford. He has six other patented inventions, including one that makes antigen production for the testing of toxoplasmosis infections far more efficient. Another detects toxoplasmosis in the amniotic fluid of pregnant women. He describes this research in the video above.

Looking back on his career choices, one thing that Boothroyd is grateful for is being able to combine his two loves at Stanford — basic research and teaching — while leaving the business of running a company to his patent licensees.

To the lecture hall filled with student researchers worried about the “postdocalypse,” the shortage of tenure-track research positions in academia, he gave this advice:

“I think the [postdocalypse] negativity is overstated. You have to have faith in yourself. You have to do what you want to do. If you’re enjoying your work and it’s a stepping stone to where you’re going, relax and see what happens.”

The next Disease Detective lecture will be held during fall quarter 2014. Watch for details on the Stanford Predictives and Diagnostics Accelerator webpage.

Previously: Patrick House discusses Toxoplasma gondii, parasitic mind control and zombies, Cat guts, car crashes, and warp-speed Toxoplasma infections, and NIH study supports screening pregnant women for toxoplasmosis

Clinical Trials, Health Policy, Research, Science Policy, Stanford News, Videos

New Stanford center aims to promote research excellence

New Stanford center aims to promote research excellence

Updated 4-24-14: The center founders discuss METRICS in this just-posted 1:2:1 podcast.

***

4-23-14: Stanford has a new center, called the Meta-Research Innovation Center at Stanford, or METRICS for short, that will focus on ways to transform research practices to improve the reproducibility, efficiency and quality of scientific investigations.
When Stanford professor John Ioannidis, MD, DSc, discusses ideas on how METRICS might improve research quality, he points to the wealth of statistics within any newspaper’s sports section.

“Science needs as many ways to measure performance as sports do,” says Ioannidis. “More important, we need to find efficient approaches for enhancing this performance. There are many ideas on how to improve the efficiency of setting a research agenda, prioritizing research questions, optimizing study design, maximizing accuracy of information, minimizing biases, enhancing reporting of research, and aligning incentives and rewards so that research efforts become more successful. Possibly we can do better on all of these fronts.”

The center’s other co-director is Steven Goodman, MD, MHS, PhD, professor of medicine and of health research and policy.

METRICS’s core group of interdisciplinary scholars will be working on various aspects of meta-research, from methodologies to processes to policy. The center will also provide educational funding for students and scholars; organize collaborative working groups that include academics, policymakers, research funders and the public; and help establish similar initiatives worldwide.

You can learn more about “meta-research” and METRICS’s mission in the short interview above and in this release. Ioannidis discusses the center’s short- and long-term goals in the video clip below.

Previously: The Lancet documents waste in research, proposes solutions, “US effect” leads to publication of biased research, says Stanford’s John Ioannidis and Shaky evidence moves animal studies to humans, according to Stanford-led study
Photo in featured-entry box by Norbert Von Der Groeben

Applied Biotechnology, Bioengineering, Global Health, Microbiology, Science

The pied piper of cool science tools

The pied piper of cool science tools

Kid-scopeWhen Stanford bioengineer Manu Prakash, PhD, and his students set out to solve a challenging global health problem, the first order of business is to have fun.

“We’re a curiosity-driven lab,” says Prakash, as he sits in his office overflowing with toys, gadgets, seashells and insect exoskeletons.

In the last month, Prakash introduced two new cool science tools — a 50-cent paper microscope and a $5 programmable kid’s chemistry set. The response from fellow science lovers, compiled on this Storify page, has been amazing.

Already, 10,000 kids, teachers, health workers and small thinkers from around the globe have signed up to receive build-your-own-microscope kits. Thousands more have sent us e-mails describing the creative ways they’d use a microscope that they could carry around in their back pockets.

For the love of science, here are a few of these inspirational e-mails:

I would love to have one. I’m only in 6th grade but I love science. I hope to visit the moon one day. — Raul

I am an electrical engineer from Kenya and have never used a microscope in all my life. But what I would really like to do is to avail the foldscope to students in a primary school that I am involved in mentoring. This apart from hopefully inspiring them in the wonders of science, would enable the students see the structure of the mosquito proboscis, a malaria-spreading agent in this part of the world. I would also like to look at the roots of mangrove trees and see the structure that enables them to keep sea water salts out. — Macharia Wanyoike

This is brilliant! I am in science and nanotechnology education and my wish is for South African rural children, Namibia, Zimbabwe, Botswana to all have these microscopes! It will be amazing. — Professor Sanette Brits, University of Limpopo, South Africa

waterbearI am studying how magnetic fields at different frequencies affect water bears. They are very difficult to find and it would be great if I had a tool to help me find them that is  portable while searching for them. I have digital motic microscope phase contrast and darkfield microscopes but nothing portable. — Edward W. Verner (Water bear shown to the left.)

I could use it to check if patients have scabies. Or if I were visiting remote monasteries in the Himalayas where they have outbreaks. I’d definitely pack it. For myself I’d use it on nature walks. GREAT ACCOMPLISHMENT for mankind. Congratulations. — Linda Laueeano, RN

Hi! I am a high school student from South Korea. While I was searching for interesting project, I saw your video. It was very amazing and I can’t believe that only one dollar can save hundreds and thousands people who were suffering from malaria and other diseases that can be found by your “foldscope”. I really love to study about your project and I had already read your thesis. Truly, it was hard to understand everything, but I really tried hard and I discussed this issue for more than a week with my science club. We are group of 10 people and we are eager to do this project. Also I really appreciate you to do this wonderful thing for poor kids in many other countries. Thanks. — Joung Yeon Park

I am assisting a K-12 community school with creating a STEAM Innovation Knowledge HUB, as they are trying to move their Common Core Curriculum into a STEM to STEAM driven program. It would be great to receive several Foldscopes or be able to purchase. Please contact me ASAP. Congratulations on a great new support product and great innovation. Thank you, smile. — Dr. Dion N. Johnson, Wayne State University

Continue Reading »

Applied Biotechnology, Bioengineering, Global Health, Stanford News

Free DIY microscope kits to citizen scientists with inspiring project ideas

Free DIY microscope kits to citizen scientists with inspiring project ideas

foldscope-paper-microscope-620x406

Stanford bioengineer Manu Prakash, PhD, is giving away 10,000 build-your-own paper microscope kits to citizen scientists with the most inspiring ideas for things to do with this new invention.

This invention, called Foldscope, is a print-and-fold optical microscope that can be assembled from a flat sheet of paper. Although it costs less than a dollar in parts, it can magnify objects over 2,000 times and is small enough to fit in a pocket.

Prakash initiated The Ten Thousand Microscopes Project, funded by the Gordon and Betty Moore Foundation, as a way to open up the wonders of the microscopic world to future generations of scientists and engineers. Prakash, who entered and won science fairs as a child in India, clearly wishes that he had a tool like this when growing up.

“Many children around the world have never used a microscope, even in developed countries like the United States,” said Prakash. “A universal program providing a microscope for every child could foster deep interest in science at an early age.”

kid-sketches

Through this project, he and his team will assemble a crowd-sourced biology microscopy manual that includes examples of creative uses for his microscope, collected from the scientists, teachers, tinkerers, thinkers, hackers and kids who participate.

“So many times people use a tool for one specific purpose and don’t realize the rich potential for other uses,” said Prakash. “This online manual will inspire further explorations.”

To apply for a Foldscope kit, submit ideas on how you would use your microscope to signup (at) foldscope (dot) com. Recipients must pledge to document their experiments in a way that could be replicated by anyone. Submission details and sample proposals are posted at Foldscope.com. Kits will be shipped in August 2014 to the applicants with the best ideas.

“My dream is that someday, every kid will have a Foldscope in their back pocket,” said Prakash.

Previously: Stanford bioengineer develops a 50-cent paper microscope, Stanford microscope inventor featured on TED Talk, Stanford bioengineer developing an “Electric Band-Aid Worm Test and Stanford bioengineers create an ultra-low-cost oral cancer screening tool
Photos by TED and Prakash Lab

Applied Biotechnology, Bioengineering, Global Health, Stanford News, Videos

Stanford microscope inventor featured on TED Talk

Stanford microscope inventor featured on TED Talk

Earlier today I wrote about the 50-cent paper microscope developed by Stanford bioengineering professor Manu Prakash, PhD. You can now watch a video of him building and demonstrating the microscope on TED.com. This TED “Talk of Week” has already been viewed almost 300,000 times.

Prakash, who grew up in the mega-cities of India without a refrigerator, is a leader in the frugal design movement. His lab is currently developing a number of global health solutions, leveraging the cost savings of emerging manufacturing techniques such as 3D printers, laser cutters and conductive ink printing.

Previously: Stanford bioengineer develops a 50-cent paper microscope, Stanford bioengineer developing an “Electric Band-Aid Worm Test and Stanford bioengineers create an ultra-low-cost oral cancer screening tool

Applied Biotechnology, Bioengineering, Global Health, Stanford News, Videos

Stanford bioengineer develops a 50-cent paper microscope

Stanford bioengineer develops a 50-cent paper microscope

Updated 6.18.14:Prakash demonstrated his invention at the first-ever White House Maker Faire this week. A paper further describing Foldscope was also published online in PLOS One.

***

Updated 3.14.14: A second blog entry, including a link to Prakash’s TED talk on this topic, can be found here. And this entry discusses Prakash’s plans to give away 10,000 build-your-own paper microscope kits to citizen scientists with the most inspiring ideas for things to do with this new invention.

***

3.11.14: When Manu Prakash, PhD, wants to impress lab visitors with the durability of his Origami-based paper microscope, he throws it off a three-story balcony, stomps on it with his foot and dunks it into a water-filled beaker. Miraculously, it still works.

Even more amazing is that this microscope — a bookmark-sized piece of layered cardstock with a micro-lens — only costs about 50 cents in materials to make.

In the video posted above, you can see his “Foldscope” being built in just a few minutes, then used to project giant images of plant tissue on the wall of a dark room.

Prakash’s dream is that this ultra-low-cost microscope will someday be distributed widely to detect dangerous blood-borne diseases like malaria, African sleeping sickness, schistosomiasis and Chagas.

“I wanted to make the best possible disease-detection instrument that we could almost distribute for free,” said Prakash. “What came out of this project is what we call use-and-throw microscopy.”

The Foldscope can be assembled in minutes, includes no mechanical moving parts, packs in a flat configuration, is extremely rugged and can be incinerated after use to safely dispose of infectious biological samples. With minor design modifications, it can be used for bright-field, multi-fluorescence or projection microscopy.

One of the unique design features of the microscope is the use of inexpensive spherical lenses rather than the precision-ground curved glass lenses used in traditional microscopes. These poppy-seed-sized lenses were originally mass produced in various sizes as an abrasive grit that was thrown into industrial tumblers to knock the rough edges off metal parts. In the simplest configuration of the Foldscope, one 17-cent lens is press-fit into a small hole in the center of the slide-mounting platform. Some of his more sophisticated versions use multiple lenses and filters.

To use a Foldscope, a sample is mounted on a microscope slide and wedged between the paper layers of the microscope. With a thumb and forefinger grasping each end of the layered paper strip, a user holds the micro-lens close enough to one eye that eyebrows touch the paper. Focusing and locating a target object are achieved by flexing and sliding the paper platform with the thumb and fingers.

microbes

Because of the unique optical physics of a spherical lens held close to the eye, samples can be magnified up to 2,000 times. (To the right are two disease-causing microbes, Giardia lamblia and Leishmania donovani, photographed through a Foldscope.)

The Foldscope can be customized for the detection of specific organisms by adding various combinations of colored LED lights powered by a watch battery, sample stains and fluorescent filters. It can also be configured to project images on the wall of a dark room.

In addition, Prakash is passionate about mass-producing the Foldscope for educational purposes, to inspire children — our future scientists — to explore and learn from the microscopic world.

In a recent Stanford bioengineering course, Prakash used the Foldscope to teach students about the physics of microscopy. He had the entire class build their own Foldscope. Then teams wrote reports on microscopic observations or designed Foldscope accessories, such a smartphone camera attachment.

For more on Foldscope optics, a materials list and construction details, read Prakash’s technical paper.

Previously: Stanford bioengineer developing an “Electric Band-Aid Worm TestStanford bioengineers create an ultra-low-cost oral cancer screening tool,
Related: Prakash wins Gates grant for paper microscope development

Cardiovascular Medicine, Genetics, Health and Fitness, Men's Health, Stanford News

The ultramarathoner’s heart

The ultramarathoner's heart

Nuttall-trail 2-webThe manufacturer’s warranty on the human heart is about 100 years or 2.5 billion beats. But do ultra-long-distance runners void this warranty when they regularly run races of 50 to 100 miles?

This was the question at the top of my mind as I wrote a tall tale about Mike Nuttall, a visionary Silicon Valley product designer and an ultramarathoner with hereditary heart disease, featured in the cardiovascular health issue of Stanford Medicine. In 2010 he had a heart attack and a triple bypass operation. Then he went on to run one of the most challenging races on the planet.

Was this fearlessness or folly?

An ultramarathoner pushes a body to its outer limits. Bones and joints are pounded. Dehydration can upset the electrolyte system, the delicate balance of salts and fluids that regulates heart, nerve and muscle functions. The heart, the ultramarathoner of organs, goes into overdrive for about 24 hours. But above all, an ultramarathon tests the mind, as a runner strives to override the brain’s overwhelming signals of pain and fatigue.

In the story, there are plenty of opinions from friends and heart experts on the wisdom of Nuttall’s post-heart-attack decision. But I guess, in the end, what he did was personal and heartfelt.

Previously: Study reveals initial findings on health of most extreme runners, Euan Ashley, MD, on personalized medicine for heart disease and Mysteries of the heart: Stanford Medicine magazine answers cardiovascular questions
Photo by Bert Keely (Nuttall’s wingman)

Applied Biotechnology, Bioengineering, Cardiovascular Medicine, Stanford News, Technology

Heart devices get a mobile makeover

Heart devices get a mobile makeover

AUM-close-up-chest560

Emerging diagnostic heart devices are going mobile. And by leveraging advances in smartphones and sensors, they’re able to perform their functions better, faster and cheaper than traditional heart monitoring equipment.

For example, the CADence, shown above, detects blocked arteries from the surface of the chest by identifying the noisy signals of blood turbulence associated with blockages.

The Zio Patch, on the right, is a sensor that can be worn on the chest for up to 14 days to detect intermittent, irregular heartbeats, called arrhythmias. ZIO-150-90

Both of these amazing devices reveal the mysteries of the heart non invasively, and they provide more potentially life-saving heart data to physicians than conventional equipment.

Yet despite these advantages, adoption into the medical system has been slow.

In the new issue of Stanford Medicine magazine on cardiovascular health, I interview the entrepreneurs behind these inventions — the heart gadgeteers — and let them describe the hurdles that add years to the process of launching new medical devices into the marketplace.

Previously: Mysteries of the heart: Stanford Medicine magazine answers cardiovascular questions, New Johnson & Johnson CEO discusses medical device futures at Stanford eventStanford physician-entrepreneur discusses need to change FDA approval process and Is the United States losing ground as a leader of medical innovation?
Photos courtesy of AUM Cardiovascular, iRhythm Technologies

Stanford Medicine Resources: