Published by
Stanford Medicine

Category

Aging

Aging, Dermatology, Public Health, Videos

Don’t skip the sunscreen in wintertime

Don’t skip the sunscreen in wintertime

When you’re spending time outdoors during the wintertime, it’s easy to justify skipping the sunscreen when the sun isn’t beating down on you mercilessly and you’re bundled up instead of sporting a swimsuit. But UV rays from the sun can penetrate clouds and snow can reflect sun onto your face, hands and any other exposed skin. So it’s important to remember to take sun safety precautions even on cold or overcast days, too.

This  Stanford Health Care video featuring dermatologist Justin Ko, MD, MBA, includes important tips for preventing skin cancer year-round. As I, like many others, prepare for a family trip to Tahoe to take advantage of the recent snow, Ko’s reminder about sun safety habits during the winter comes at a good time. For example, I suspect I’ve been skimping on sunscreen: Ko says you need a shot glass-full to completely cover your body. If you’re using a spray-on sunscreen, you need to spray for a full 60 seconds.

Watch the video to learn more information about how to identify possible cancerous moles and preventing high-risk exposures, like tanning beds.

Previously: Skin cancer linked to UV-caused mutation in new oncogene, say Stanford researchers, Humble anti-fungal pill appears to have a noble side-effect: treating skin cancer, Skin cancer images help people check skin more often and effectively, and The importance of sunscreen in preventing skin cancer

Aging, Cancer, Genetics, Research

Telomeres tell all about longevity and health

Telomeres tell all about longevity and health

10085714333_d8367dbe2a_oIf I were to go back to school for a PhD, I think I’d study telomeres. Telomeres, the protective caps at the end of each chromosome, shrink with aging and other stressors leaving an organism vulnerable to a various disorders and cancer.

So, telomere fan that I am, I was thrilled to sit in on a recent Psychiatry & Behavior Sciences Grand Rounds talk at Stanford featuring Elizabeth Blackburn, PhD. A professor of biology and physiology at the University of California, San Francisco,  Blackburn won the Nobel Prize in 2009 for her work on telomeres.

During the event, she gave the packed auditorium a whirlwind overview of telomere biology. Blackburn explained to attendees that telomere length is affected by both genes and the environment, and that some folks just start out with longer ones. Telomeres are maintained by an enzyme called telomerase. Slashing the amount of telomerase can cause early, immune dysfunction, cancer and diabetes. Some genetic telomere troubles manifest as disorders such as aplastic anemia or pulmonary fibrosis.

In general, telomere length correlates with what Blackburn called a “health span,” or duration of time someone stays healthy.

Recently she and colleagues measured telomere length in 100,000 people of all ages, a project they needed to develop a special robot to complete. They found that length of telomeres decreases into age 75. Then, it curves up to 95, accounting for the longevity of individuals with long telomeres. And yes, older women tend to have longer telomeres than older men.

Continue Reading »

Aging, In the News, Neuroscience, Research, Science, Stanford News

Stanford research showing young blood recharges the brains of old mice among finalists for Science Magazine’s Breakthrough of the Year

Stanford research showing young blood recharges the brains of old mice among finalists for Science Magazine's Breakthrough of the Year

ballot box

Stanford research showing that an infusion of young blood recharges the brains of old mice is one of the finalists for Science magazine’s annual contest for People’s Choice for Breakthrough of the Year. Today is the last day to cast your vote. Click here if you’d like to support the work, which could lead to new therapeutic approaches for treating dementia.

Several months ago, I had the pleasure of helping break the news about this great piece of research. So, let’s face it, I take a certain amount of pride in the amount of news coverage it received and the attention it’s getting now.

But the real credit goes to Stanford neuroscientist Tony Wyss-Coray, PhD, along with his able lead author Saul Villeda, PhD, and colleagues. This important discovery by Wyss-Coray’s team revealed that infusing young mice’s blood plasma into the bloodstream of old mice makes those old mice jump up and do the Macarena – and perform a whole lot better on mousey IQ tests.

Infusing blood plasma is hardly a new technique. As Wyss-Coray told me when I interviewed him for my release:

“This could have been done 20 years ago….You don’t need to know anything about how the brain works. You just give an old mouse young blood and see if the animal is smarter than before. It’s just that nobody did it.”

And after all, isn’t that what breakthroughs are all about? It’s still too early to say, but this simple treatment – or (more likely) drugs based on a better understanding of what factors in blood are responsible for reversing neurological decline –  could someday turn out to have applications for Alzheimer’s disease and much more.

At last count, the Wyss-Coray’s research is neck-and-neck with a competing project for first place. If you think, as I do, that a discovery with this much potential deserves a vote of confidence make sure to take a moment this afternoon to cast your virtual ballot.

Previously: The rechargeable brain: Blood plasma from young mice improves old mice’s memory and learning, Old blood makes young brains act older, and vice versa and Can we reset the aging clock, once cell at a time?
Photo by FutUndBeidl

Aging, Neuroscience, Stanford News, Stroke, Videos

Examining the potential of creating new synapses in old or damaged brains

Examining the potential of creating new synapses in old or damaged brains

Synapses are the structures in the brain where neurons connect and communicate with each other. Between early childhood and the beginning of puberty, many of these connections are eliminated through a process called “synaptic pruning.” Stroke, Alzheimer’s disease, and traumatic brain injury can also cause the loss of synapses. But what if new synapses could be created to repair aging or damaged brains?

Stanford neurobiologist Carla Shatz, PhD, addresses this question in the above Seattle+Connect video. In the lecture, she discusses the possibility of engaging the molecular and cellular mechanisms that regulate critical developmental periods to regrow synapses in old brains. Watch the video to learn how advances at the neural level around a novel receptor, called PirB, have implications for improving brain plasticity, learning, memory and neurological disorders.

Previously: Drug helps old brains learn new tricks, and heal, Cellular padding could help stem cells repair injuries and Science is like an ongoing mystery novel, says Stanford neurobiologist Carla Shatz and “Pruning synapses” and other strides in Alzheimer’s research

Aging, History, Medicine and Literature, Medicine and Society, Stanford News

Stanford humanities scholar examines "the youngest society on Earth"

Stanford humanities scholar examines "the youngest society on Earth"

Young and old faces Over the past decades, our society has undergone a process of “juvenescence” that, according to Stanford professor Robert Harrison, PhD, makes it the “youngest on Earth.” For the first time in human history, he says, “the young have become a model of emulation for the older population, rather than the other way around” (as quoted in Stanford Report). The post-war period “has unleashed extraordinary youthful energies in our species and represents one of the momentous revolutions in human cultural history.”

Harrison is a professor of Italian literature whose new book Juvenescence: A Cultural History of Our Age examines the cultural forces that have brought about this development. The term “juvenescence” draws on the biological concept of neoteny, or the retention of juvenile characteristics through adulthood. Harrison’s research spans literature, philosophy, and evolutionary science.

His basic argument is that “juvenescence” can refer to either a positive or a negative change, and it isn’t clear which more accurately describes our current situation. The positive sense is one of cultural rejuvenation, while the negative one denotes juvenilization. Harrison explains, citing examples from his book:

Rejuvenation is about recognizing heritage and legacy, and incorporating and re-appropriating historical perspective in the present – like the Founding Fathers did when they created a new nation by drawing on ancient models of republicanism and creatively retrieving many legacies of the past… Unlike rejuvenation, juvenilization is characterized by the loss of cultural memory and a shallowing of our historical age.

…I feel ambivalent about where we are culturally in this age of ours.  It is hard to say whether we are on the cusp of a wholesale rejuvenation of human culture or whether we are tumbling into a dangerous and irresponsible juvenility.

Several aspects of our society suggest juvenilization. Most citizens of the developed world today enjoy the luxury of remaining childishly innocent about what they operate, consume, and depend on in daily life, while “in terms of dress codes, mentality, lifestyles and marketing, the world that we live in is astonishingly youthful and in many respects infantile.” Our culture’s emphasis on innovation and change honors the youthful drive that brings renewal and progress, but, without firm roots in the stability and wisdom of older generations and longstanding institutions, this risks being a meaningless chase after novelty. Youth’s genius is a luxury that requires solid foundations.

Continue Reading »

Aging, Chronic Disease, Pediatrics, Research

"The child is father of the man": Exploring developmental origins of health and disease

"The child is father of the man": Exploring developmental origins of health and disease

3801281145_1f3fb2c8bf_z Among scientific communities, there is a small but growing segment of research concerned with “DOHaD” – the developmental origins of health and disease. The work usually focuses on how childhood, including birth, the fetal period, and sometimes even pre-conception events, affects a person’s lifelong health and well-being and is the topic of a recent article (subscription required) published in Pediatrics by researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development. The phrase “the child is father of the man” is a line from William Wordsworth’s “My Heart Leaps Up” and also the title of the article, whose authors added, commendably, “and the mother of the woman.”

DOHaD gained acceptance within the medical community starting with the “Barker Theory” in 1995, when David Barker, MD, showed that babies with low birth weights were at higher risk for coronary heart disease later in life. Prior to his work, the dominant model was that the health of those who survived childhood without major disease or disability was sort of “reset” in adulthood, to decline from then into old age. This is increasingly understood to be a simplistic model.

Resistance to the idea stems from the fact that links between child and adult health are associative and not proven to be causative; therefore, the article’s authors Alan E. Guttmacher, MD, and Tonse N.K. Raju, MD, call for scientists to do more mechanistic research investigating causation, and “more importantly, to devise treatments and preventions, for the many “adult-onset” conditions that actually are rooted in much earlier exposures and events.” Such research is difficult because of the incredible number of variables that occur over an entire lifespan, and even within the category “perinatal risk factors.”

In the piece, the authors describe the importance of DOHaD and how a better understanding of it could affect pediatrics and health care:

Arguably the most important advance in the health care of children, and in establishing pediatrics as a medical specialty, was the cultural awakening that children were not simply small adults. Ironically, DOHaD greatly expands the impact of pediatrics by reversing that shift and focusing on how children actually are smaller versions of the adults they will become.

Once the biological and behavioral pathways that underlie DOHaD are identified and understood, the role of pediatrics should expand in fundamental and powerful ways. Anticipatory guidance in the future will not be just about the next 6 weeks or 6 months or even 6 years of the child’s life, but the entire life span. The pediatrician and other children’s health care providers will inform parenting and behaviors, including diet and exercise, and even prescribe presymptomatic medication targeted to the individual child. The pediatrician will become the gatekeeper to lifelong health.

Photo by Brad Brundage

Aging, Podcasts

Healthy aging, made easy: A conversation

Healthy aging, made easy: A conversation

Gray hair is sign of wisdom in the Middle East, geriatrician Mehrdad Ayati, MD, writes in the new book “Paths to Healthy Aging,” which he penned with his wife, Azerou (Hope) Azarani, PhD. Born into a family of doctors in Iran, Ayati moved to the United States in his 30s and soon discovered his passion for caring for older folks. The book aims to provide a easily digestible guide to aging, with chapters on mental health, exercise and nutrition.

Ayati recently sat down with Paul Costello, chief communication officer for Stanford’s medical school, for a conversation captured in a 1:2:1 podcast. During the talk Ayati explained why he was motivate to write the book:

One of the major complaints is there’s a lack of valid and easy-to-understand information about aging. They’ve been complaining to me that they’ve being bombarded by a lot of contradictory claims and  a lot of instructions that are very difficult to follow.

Costello also asked Ayati about his transition from Iran to America — older people are treated very differently in those two cultures. Ayati responded:

In my culture, elderly people have a special status in their family, their community and their society. They are considered very sage. They are highly respected by other people… Since they are young, they have a dream to have this status someday in their life.

Ayati likened the Middle Eastern respect for the elderly to America’s love of babies. Both are vulnerable humans, and both need our love and support, Ayati said.

For more information on the book, which also includes a series of questionnaires for readers, visit Ayati’s blog.

Previously: Tick tock goes the clock — is aging the biggest illness of all?, Neighborhood’s “walkability” helps older adults maintain physical and cognitive health and Walking and aging: A historical perspective
Photo by Garry Knight

Aging, Genetics, In the News, Research, Stanford News

"A lot more data" needed to determine what makes supercentenarians live so long

"A lot more data" needed to determine what makes supercentenarians live so long

Scientists from Stanford and elsewhere have been hunting for a genetic explanation for extreme longevity for the past four years and are realizing that it is a more difficult proposition than they initially hoped.

Their research compared the genomes of 17 “supercentenarians” – those who have lived 110 years and beyond – with those of 4,300 “regular” people recorded earlier in a National Institutes of Health study. The study was geared toward finding a single gene or group of genes responsible for a particular trait – in this case longevity – similar to genes which have been found to cause disease or confer immunity. But they have had no luck. Stuart Kim, PhD, a Stanford geneticist and molecular biologist and founder of the Kim Lab for the study of aging, commented in a San Francisco Chronicle piece:

We were looking for a really simple explanation in a single gene, and we know now that it’s a lot more complicated, and it will take a lot more experiments and a lot more data from the genes of more supercentenarians to find out just what might account for their ages.

However, data about the oldest people in the world still suggests that the reason they can live so long has to do with their genes, and not with lifestyle choices. The supercentenarians have average rates of cancer, heart disease, and stroke, although they have escaped many age-related diseases, and their smoking, alcohol, exercise and diet appear no different than among ordinary people. Furthermore, as noted in the article, the parents, siblings and children of the centenarians have also lived well beyond average.

Previously: Unlocking the secrets to human longevity and California’s oldest person helping geneticists uncover key to aging

Aging, Neuroscience, Research

Being bilingual "provides the brain built-in exercise"

Being bilingual "provides the brain built-in exercise"

Spanish_booksWith less than two months left in 2014, many of us will soon begin the annual ritual of selecting our New Year’s resolutions. Those who are looking to boost their brain power may want to consider learning a second language in 2015: Research published today in the journal Brain and Language shows that being bilingual makes the brain more efficient at processing information.

In the study, researchers used functional magnetic resonance imaging (fMRI) technology to examine participants’ brains as they performed language comprehension tests. For example, researchers would say the word “cloud” to individuals while showing them four pictures, including one of a cloud and others of similar-sounding objects, like a clown. To complete the exercise, participants had to recognize the correct photo and ignore the irrelevant images. According to a release, study results showed:

The bilingual speakers were better at filtering out the competing words because their brains are used to controlling two languages and inhibiting the irrelevant words, the researchers found.

The fMRI scans showed that “monolinguals had more activation in the inhibitory control regions than bilinguals; they had to work much harder to perform the task,” [said lead author Viorica Marian, PhD.]

“Inhibitory control is a hallmark of cognition,” said Marian. “Whether we’re driving or performing surgery, it’s important to focus on what really matters and ignore what doesn’t.”

The fact that bilinguals are constantly practicing inhibitory control could also help explain why bilingualism appears to offer a protective advantage against Alzheimer’s and dementia, said Marian.

“That’s the exciting part,” she said. “Using another language provides the brain built-in exercise. You don’t have to go out of your way to do a puzzle because the brain is already constantly juggling two languages.”

The findings add to the growing body of scientific evidence showing that being bilingual can have profound impacts on your brain.

Previously: Study shows bilingualism may enhance attention and working memory and ¿Habla Español? How bilingualism may delay the onset of Alzheimer’s symptoms
Photo by Megan Morris

Aging, NIH, Public Health, Research, Science, Stanford News

Tick tock goes the clock – is aging the biggest illness of all?

Tick tock goes the clock - is aging the biggest illness of all?

3821120232_d1452b4109_zIt’s an uncomfortable truth that aging is the single biggest risk factor for many chronic diseases. It’s also completely out of our control. (The alternative is, well, not so fun to contemplate.) But although we all think we’d like to live longer, longevity in and of itself is not necessarily a good thing. Living longer rapidly loses its appeal if you’re too sick or feeble to really enjoy your extra “golden” years.

But researchers from many scientific disciplines are now working to understand how and why our bodies tend to break down as time passes. The Trans-NIH Geroscience Interest Group (a group of researchers from numerous NIH institutes) interested in aging held a summit in 2013 to explore mechanisms of aging and identify common themes that could serve as research targets. The thought is that understanding, and slowing, aging may be an efficient way to tackle many chronic diseases simultaneously.

Now the group, which includes Stanford geneticist Anne Brunet, PhD; neurologist Tony Wyss-Coray, PhD; and Thomas Rando, MD, PhD, has released the conclusions of the summit and outlined a plan for the work that lies ahead. (Rando is the director of the Glenn Center for the Biology of Aging at Stanford.) Many of the findings focus  on a concept called “healthspan,” which designates the portion of a person’s lifespan in which he or she is relatively healthy and fully functional. From the Cell article:

While life expectancy continues to rise, healthspan is not keeping pace because current disease treatment often decreases mortality without preventing or reversing the decline in overall health.  Elders are sick longer, often coping with multiple chronic diseases simultaneously.  Thus, there is an urgent need to extend healthspan.

The researchers identified seven intertwined “pillars of aging” for targeted research, including adaptation to stress, stem cells and regeneration, metabolism, macromolecular damage, inflammation, epigenetics and a concept called proteostasis, which describes the intricate dance in which proteins are made, transported and degraded within a cell. They suggest the creation of an Aging Research Initiative that works to merge the emerging field of geroscience with research on chronic disease and to search for therapeutic interventions that could extend both lifespan and healthspan.

Continue Reading »

Stanford Medicine Resources: