Published by
Stanford Medicine



Cancer, Chronic Disease, Dermatology, Stanford News, Surgery, Transplants

Rebuilding Cassie’s smile: A lung transplant patient’s struggle with skin cancer

lung patientWhen I first met Cassie Stockton, she was seated in an exam chair in Stanford’s dermatology clinic, getting cosmetic skin treatments. Lovely and young, just 21 years old, it seemed a bit silly. How could she possibly need injectable lip fillers or laser skin treatments?

I knew Stockton had a lung transplant at 15 and that the immunosuppressant drugs she was required to take to keep her body from rejecting the donated lungs had made her susceptible to skin cancer. But it wasn’t until I researched her story in depth that I truly understood how she ended up needing regular cosmetic treatments here.

As I explain in my recently published Stanford Medicine article, her story began at birth:

Born premature, [Cassie] was intubated the first two weeks of life, then sent home with her mother and an oxygen tank. She remained on oxygen 24 hours a day for the first two years of her life. Eventually, she was diagnosed with bronchopulmonary dysplasia, a chronic lung disorder …

Sixteen years later, the donated gift of new lungs saved her life – but it left scars, both emotional and physical:

The day Stockton woke up out of the anesthesia six years ago after a 13-hour surgery at the Transplant Center at Lucile Packard Children’s Hospital Stanford, she breathed in oxygen with newly transplanted lungs, and breathed out sobs. Tears streamed down her face. “At first, I thought she was in pain,” says her mother, Jennifer Scott, who stood by her side. But that wasn’t it. Stockton was overwhelmingly sad because she now knew her new lungs were the gift of a child. It was Dec. 6, 2009, just before Christmas. The death of someone else’s child had given her a whole new life.

And now:

Every four months, she and her fiancé make the four-hour drive from their home in Bakersfield, California, past the oil rigs and cattle farms to Stanford’s Redwood City-based dermatology clinic for her skin cancer screening. It’s been two years of treatments: freezings, laserings, a total of eight outpatient skin surgeries — the most significant resulting in the removal of the left half of her lower lip. The dermatologic surgeon removes the skin cancers, and then gets to work to repair the damage. “It’s heart-breaking to have to remove the lip of a 21-year-old woman,” says Tyler Hollmig, MD, clinical assistant professor of dermatology and director of the Stanford Laser and Aesthetic Dermatology Clinic, who leads Stockton’s treatment and keeps her looking like the young woman she is, restoring her skin, rebuilding her lip, making sure she keeps her smile.

Stockton doesn’t complain about any of the struggles she’s had post transplant. She knows she got a second chance at life. And, she tells me, it’s her job to take care of the lungs given to her by that child who died.

Previously: This summer’s Stanford Medicine magazine shows some skin
Photo by Max Aguilera-Hellweg

Dermatology, Public Health, Stanford News

It’s never too early to protect your skin from sun damage

It's never too early to protect your skin from sun damage

I’m not ashamed to admit that I dork out for Disneyland. I was there a few weeks ago, wearing a Minnie Mouse T-shirt and sprinting from one thrill ride to the next. But this trip was different in one respect: I made sure to apply a broad-spectrum sunscreen to my face and limbs before heading into the Magic Kingdom and then brought along the tube so that I could reapply it throughout the day.

Growing up, I was happy that my skin picked up a tan easily, with only occasional sunburn. As an adult, I watched the evidence pile up about the hazards of sun exposure and tried to remember to use sunscreen in the summer months when I was outside for long periods of time. But after speaking with several Stanford dermatologists for a story about skin protection for the recent issue of Stanford Medicine magazine, I resolved to be more vigilant year-round.

As my story notes, one in five Americans will develop skin cancer in their lifetime. One good way of warding off that threat is to use a broad-spectrum sunscreen, many of which are now much lighter and less greasy that the sunscreens of old.

“Your sunscreen should be considered your facial lotion,” dermatology professor Susan Swetter, MD, told me. “It works to moisturize the skin as well as to prevent photoaging and skin cancer.”

The story also includes tips for protecting your skin and for encouraging children to develop good skin-protection habits at an early age. Parents seem to be taking the message to heart: As I made my way through the crowded streets of Disneyland, one scent stood out among all of the others. The unmistakable smell of sunscreen.

Previously: This summer’s Stanford Medicine magazine shows some skinBeat the heat – and protect your skin from the sunWorking to protect athletes from sun dangers and The importance of sunscreen in preventing skin cancer
Illustration by Aleksandar Velasevic

Dermatology, Evolution, Pediatrics, Research, Science, Stanford News, Surgery

To boldly go into a scar-free future: Stanford researchers tackle wound healing

To boldly go into a scar-free future: Stanford researchers tackle wound healing

scarshipAs I’ve written about here before, Stanford scientists Michael Longaker, MD, and Irving Weissman, MD, are eager to find a way to minimize the scarring that arises after surgery or skin trauma. I profiled the work again in the latest issue of Stanford Medicine magazine, which focuses on all aspects of skin health.

My story, called “Scarship Enterprise,” discusses how scarring may have evolved to fulfill early humans’ need for speed in a cutthroat world:

“We are the only species that heals with a pathological scar, called a keloid, which can overgrow the site of the original wound,” says Longaker. “Humans are a tight-skinned species, and scarring is a late evolutionary event that probably arose in response to a need, as hunter-gatherers, to heal quickly to avoid infection or detection by predators. We’ve evolved for speedy repair.”

Check out the piece if you’re interested in reading more about this or learning how scarring happens, or why, prior to the third trimester, fetuses heal flawlessly after surgery. (Surprisingly, at least to me, many animals also heal without scarring!)

Previously: This summer’s Stanford Medicine magazine shows some skinWill scars become a thing of the past? Stanford scientists identify cellular culprit, New medicine? A look at advances in wound healing and Stanford-developed device shown to reduce the size of existing scars in clinical trial
Illustration by Matt Bandsuch

Dermatology, Research, Stanford News, Videos

Life with epidermolysis bullosa: “Pain is my reality, pain is my normal”

Life with epidermolysis bullosa: "Pain is my reality, pain is my normal"

“Pain is my life. It’s my reality. It’s my normal.” These are the words that haunted me for days after first watching this film about Paul Martinez, a 32-year-old Stanford patient with epidermolysis bullosa (EB). I’m used to being moved by films made by my colleague Mark Hanlon, but his latest effort, called “The Butterfly Effect,” is about as powerful (and tear-inducing) as anything I’ve seen during my time here.

EB, as Krista Conger described earlier this week, is “incurable, fatal, and nearly indescribably painful.” Dermatologist Paul Khavari, MD, PhD, says in the film that “it just breaks your heart” when talking to patients and their families about what they go through, and Martinez, who shared his daily life and opened his home to Hanlon, puts it this way:

The word ‘pain’ itself doesn’t even describe how bad EB is. Your body is constantly on fire – it burns from the wounds from raw flesh, and it keeps repeating over and over and over. The cycle is never ending.

Seeing what Martinez and his caretaker-mother endure every day (warning: it’s not easy to watch) makes you wonder, frankly, how they do it – and also illustrates just how desperately a cure for this terrible disease is needed. Luckily, as detailed both in the film and Conger’s accompanying Stanford Medicine magazine article, researchers here are working to combat the illness – and have been doing so for decades. And Khavari closes out the film with a hopeful tone, saying: “We can start to see on the horizon the potential to really make a difference for patients.”

Previously: The worst disease you’ve never heard of: Stanford researchers and patients battle EB and This summer’s Stanford Medicine magazine shows some skin

Cancer, Clinical Trials, Dermatology, Genetics, Pain, Pediatrics, Research, Stanford News

The worst disease you’ve never heard of: Stanford researchers and patients battle EB

The worst disease you've never heard of: Stanford researchers and patients battle EB

EB patient and docsI’m often humbled by my job. Well, not the job, exactly, but the physicians, researchers, and especially patients who take the time to speak with me about their goals and passions, their triumphs and fears. Their insight helps me as I struggle to interpret what goes on here at the Stanford University School of Medicine for others across the university and even around the world.

But every once in a while, an article comes along that brings me to my (emotional) knees. My article “The Butterfly Effect” in the latest issue of Stanford Medicine magazine describes the toll of a devastating skin disease called epidermoloysis bullosa on two young men and their families, as well as the determined efforts of a dedicated team of doctors and scientists to find a treatment. As a result, Stanford recently launched the world’s first stem-cell based trial aimed at correcting the faulty gene in the skin cells of patients with a severe form of the condition, which is often called EB.

I trace the path of one family as they learn, mere hours after his birth, that their son, Garrett Spaulding, has EB, which compromises the ability of the outer layers of the to stick together during friction or pressure. Patients develop large blisters and open wounds over much of their bodies. It’s incurable, fatal, and nearly indescribably painful. Paul Khavari, MD, PhD, now the chair of Stanford’s Department of Dermatology, was a young doctor at the time newborn Garrett was admitted to Lucile Packard Children’s Hospital Stanford in 1997.

“His whole body, his skin was blistered and falling off everywhere someone had touched him,” Khavari recalls in the article. “His parents were devastated, of course, at a time that was supposed to be one of the most joyful of their lives.”

Garrett’s now 18 years old, but the disease is taking its toll.

You’ll also meet Paul Martinez, one of the first participants in Stanford’s new clinical trial. He’s 32, which makes him an old man in the EB community. Unlike many EB patients, he has finished high school and completed a college degree in business marketing with a dogged determination that makes me ashamed of my petty complaints about my minor life trials. And he’s done it without relying on the pain medications essential for most EB patients. As he explains in the article:

We don’t know what it is like to not be in pain. It’s just normal for us. […] I have a very high tolerance, and don’t take any pain medication. I cherish my mind a lot. Rather than feel like a zombie, I prefer to feel the pain and feel alive.

Continue Reading »

Aging, Cancer, Dermatology, Genetics, Research, Stanford News

Genetic secrets of youthful skin

Genetic secrets of youthful skin

new hatEvery year, upwards of $140 billion a year gets spent on cosmetics. In the United States alone, says an authoritative report, a recent year saw upwards of 5.6 million Botox procedures, 1.1 million chemical peels, almost a half-million laser skin procedures, 196,286 eyelid surgeries and a whole bunch of face lifts.

If you’ve got the courage to compare your present-tense face with the one you were wearing 20 or even 10 years ago, you’ll see why. As I wrote in a just-published Stanford Medicine article, “Wither youth?”:

The terrain of aging skin grows all too familiar with the passing years: bags under the eyes, crow’s feet, jowls, tiny tangles of blood vessels, ever more pronounced pores and pits and pigmentation irregularities. Then there are wrinkles — long, deep “frown lines” radiating upward from the inside edges of the eyebrows and “laugh lines” that trace a furrow from our nostrils to the edges of our lips in our 40s, and finer lines that start crisscrossing our faces in our 50s. Sagging skin gets more prominent in our later years as we lose bone and fat.

“And,” I added wistfully, “it’s all right there on the very outside of us, where everyone else can see it.”

Stanford dermatologist Anne Chang, MD, who sees a whole lot of skin, got to wondering: Why does skin grow old? Armed with a sophisticated understanding of genetics, she went beyond lamenting lost youth and resolved to address the question scientifically, asking: “Can you turn back time? Can aging effects be reversed? Can you rejuvenate skin, make it young again?”

The answers she’s come up with so far – from hereditary factors to a possible underlying genetic basis for how some treatments now in common commercial cosmetic use (such as broadband light therapy) could potentially slow or even reverse the aging of skin – are described in my magazine article.

Previously: This summer’s Stanford Medicine magazine shows some skinResearchers identify genetic basis for rosacea, New study: Genes may affect skin youthfulness and Aging research comes of age
Photo by thepeachpeddler

Cancer, Dermatology, Infectious Disease, Stanford News, Transplants

This summer’s Stanford Medicine magazine shows some skin

This summer's Stanford Medicine magazine shows some skin

below surface banner and 1 blogSkin is superficial, literally. But it’s also really deep, as I realized while editing the just-published issue of Stanford Medicine magazine. The summer issue features the special report “Skin deep: The science of the body’s surface.”

I learned from the chair of Stanford’s Department of Dermatology, Paul Khavari, MD, PhD, that thousands of diseases affect the skin. And I learned it’s surprisingly abundant: An average-sized adult is covered with about 20 square feet of skin.

Research on skin is thriving, in part, because skin is so easy to get hold of, Khavari told me. “The accessibility of skin tissue to the application of new technologies, including genomics, proteomics, and metabolomics, make this a watershed moment for progress in alleviating the tremendous suffering caused by the global burden of skin disease,” he said.

The magazine, produced with support from the dermatology department, includes articles not only about new treatments, but also insights into how skin works when it’s healthy and how to keep it that way. In a Q&A and audio interview, actress and playwright Anna Deavere Smith, who is African-American, addresses skin’s social meaning, discussing her relationship to her own skin and how, as a writer and actor, she gets under the skin of her characters. The online version of the magazine includes audio of an interview with Smith.

Also in the issue:

  • The butterfly effect“: A story about two young men coping with one of the world’s most painful diseases — the skin-blistering condition epidermolysis bullosa — including news about an experimental treatment to replace their broken genes. The online version includes a video with a patient at home and interviews with experts on the condition.
  • Surviving melanoma“: A report on progress being made after years of stagnation in treating the most deadly skin cancer: melanoma.
  • The rarest of rashes“:  A look at one of Stanford Medicine’s great accomplishments in dermatology: successful treatment of a rare but dangerous rash — cutaneous lymphoma, a form of blood cancer that spreads to the skin.
  • Take cover“: Tips on keeping skin safe from the sun.
  • Wither youth“: A feature on research seeking to answer the question: Why does skin age?
  • New lungs, new life“: The story of a young woman who lost her smile and had it restored through surgery.

The issue also includes a story considering the rise in number of castoff donor hearts, despite a shortage of the organs for transplants, and an excerpt from Jonas Salk: A Life, a new biography of the polio-vaccine pioneer, written by retired Stanford professor Charlotte Jacobs, MD.

Previously: Stanford Medicine magazine reports on time’s intersection with health, Stanford Medicine magazine traverses the immune system and Stanford Medicine magazine opens up the world of surgery
Photo, from the Summer 2015 issue of Stanford Medicine, by Max Aguilera-Hellweg

Cancer, Dermatology, Events, Stanford News, Videos

Free skin cancer screening offered on June 13

Free skin cancer screening offered on June 13

Skin cancer is one of the most preventable cancers – and one of the most treatable, if it’s detected early enough. Knowing the possible risk factors, such as fair skin, excessive sun exposure, or atypical moles, might help in recognizing the signs of the disease, and getting a professional screening is also always a good idea.

Each year, Stanford dermatologists offer a free screening for skin cancer; this year’s event is happening Saturday, June 13 from 8:00-11:30 AM at the Stanford General Dermatology Clinic in Redwood City. If you’re a local reader, plan to stop by.

Alex Giacomini is an English literature major at UC Berkeley and a writing and social media intern in the medical school’s Office of Communication and Public Affairs.  

Previously: The importance of sunscreen in preventing skin cancerSkin cancer images help people check skin more often and effectively, and Study shows link between indoor tanning and common skin cancer

Cancer, Dermatology, FDA, Health Policy, In the News, Public Health

Experts call on FDA for a “tanning prevention policy”

Experts call on FDA for a "tanning prevention policy"

6635416457_a62bfeb09d_zIndoor UV tanning beds are known carcinogens that are responsible for many cases of skin cancer, which is the most commonly diagnosed form of cancer in the U.S. A recently issued Call to Action to Prevent Skin Cancer from the U.S. Surgeon General states that “more than 400,000 cases of skin cancer [8% of the total], about 6,000 of which are melanomas, are estimated to be related to indoor tanning in the U.S. each year” while “nearly 1 out of every 3 young white women engages in indoor tanning each year,” making indoor tanning a serious public health issue.

In a JAMA opinion piece published yesterday, Darren Mays, PhD, MPH, from the Georgetown University Medical Center‘s Department of Oncology, and John Kraemer, JD, MPH, from Georgetown’s School of Nursing and Health Studies, argued that the FDA needs to step up its regulatory approach and restrict access to this technology – due to its limited therapeutic benefits and known damaging effects.

In 2011, California was the first state to ban access to indoor UV tanning beds to minors. The authors assert that “state-level policies restricting a minor’s access to indoor tanning devices are effectively reducing the prevalence of this cancer risk behavior among youth,” but argue that regulation at the federal level is in order:

Like tobacco products, a national regulatory framework designed to prevent and reduce indoor tanning could reduce public health burden and financial costs of skin cancer. …from a public health perspective the indoor tanning device regulations are not commensurate to those of other regulated products that are known carcinogens with very little or no therapeutic benefit.

However, the likelihood of this regulation taking place is questionable:

FDA did not leverage its authority last year to put a broader regulatory framework in place, which could have included a national minimum age requirement and stronger indoor tanning device warning labels… Critical factors seem to be aligning for such policy change to take place, but additional momentum is needed to promote change at a national scale. The US national political environment makes more expansive regulation by either FDA or Congress seem unlikely in the near future.

The authors concluded with a call for organizations other than governments to help build momentum on toward a “national indoor tanning prevention policy.” For example, they said, universities could implement “tan-free” campus policies similar to the “tobacco-free” campaign.

Previously: More evidence on the link between indoor tanning and cancers, Medical experts question the safety of spray-on tanning productsTime for teens to stop tanning?, Senator Ted Lieu weighs in on tanning bed legislation and A push to keep minors away from tanning beds
Photo by leyla.a

Dermatology, Research, Stanford News

Researchers identify genetic basis for rosacea

Researchers identify genetic basis for rosacea

roseceaRosacea causes skin on the face to redden and can result in acne-like bumps, but it isn’t just an aesthetic problem. Some rosacea patients experience itching, stinging and burning sensations on the affected skin, which can make sleeping, concentrating and social interactions challenging.

Finding out what causes rosacea could help scientists identify new treatments and understand its links to other known diseases – and Stanford researchers, in collaboration with the personal genomics and biotechnology company 23andMe, have now identified a genetic basis for the incurable but treatable inflammatory disease. Their work was published online March 12 in the Journal of Investigative Dermatology.

I describe in a press release how Anne Lynn Chang, MD, lead author of the paper and an assistant professor of dermatology at Stanford, and her collaborators partnered with 23andMe on this work. 23andMe customers of European descent were asked via survey if they had ever been diagnosed with rosacea, and those who answered yes were grouped together while those who answered no were placed in a control group. And then:

The researchers compared the genomes of rosacea patients and controls and looked for differences in the DNA building blocks, called nucleotides, in people diagnosed with rosacea. Such differences, called single nucleotide polymorphisms, occur when one nucleotide, such as tyrosine, is substituted for another, such as cytosine. This kind of analysis is called a genome-wide association and, because the entire genome is searched, is an unbiased way to look for genetic links to disease.

Two areas of the genome were linked to having rosacea, and both areas were near genes involved in systemic inflammatory and autoimmune diseases, such as multiple sclerosis, diabetes, sarcoidosis and inflammatory bowel disease.

“The next step is to look more into these associations of rosacea with other diseases,” Chang told me, “and explore whether the inflammation in rosacea is a cutaneous sign of risk for other disease.”

Kimberlee D’Ardenne is a writing intern in the medical school’s Office of Communication and Public Affairs.

Previously: New study: Genes may affect skin youthfulness and When it comes to your genetic data, 23andMe’s Anne Wojcicki says: Just own it
Photo, altered from original, by Kristie Wells

Stanford Medicine Resources: