Published by
Stanford Medicine

Category

Research

Behavioral Science, Imaging, Neuroscience, Research, Stanford News

Stanford researchers tie unexpected brain structures to creativity – and to stifling it

Stanford researchers tie unexpected brain structures to creativity - and to stifling it

EinsteinHow often does the accountant turn out to be the life of the party? How often do the Nike sneakers, rather than the Armani suits, call the shots? Yet that may be the case when it comes to – of all things! – creativity.

As I wrote in this news release about an imaging study just published in Scientific Reports:

[Stanford scientists] have found a surprising link between creative problem-solving and heightened activity in the cerebellum, a structure located in the back of the brain and more typically thought of as the body’s movement-coordination center… The cerebellum, traditionally viewed as the brain’s practice-makes-perfect, movement-control center, hasn’t been previously recognized as critical to creativity.

That’s putting it mildly. And that’s not the only bizarre outcome of the study, whose findings also suggest that shifting the brain’s higher-level, executive-control centers into higher gear impairs, rather than enhances, creativity.

When I interviewed neuroscientist Allan Reiss, MD, the study’s senior author, about the research, he told me:

We found that activation of the brain’s executive-control centers – the parts of the brain that enable you to plan, organize and manage your activities – is negatively associated with creative task performance.

Creativity is one of the most valuable human attributes, as well as one of the hardest to measure. Tying it to activity in particular brain structures in a living, thinking human brain is a brainteaser in itself.

Continue Reading »

Biomed Bites, Neuroscience, Research, Videos

The inner engineer: One researcher’s quest to understand the brain

The inner engineer: One researcher's quest to understand the brain

Welcome to Biomed Bites, a weekly feature that introduces readers to some of Stanford’s most innovative researchers.

For Jennifer Raymond, PhD, associate professor of neurobiology, the decision to devote her career to deciphering how the brain operates was, well, a no-brainer.

“I think we’re all curious about how our brains work,” Raymond says in the video above. “It’s really fundamental to who we are.”

She’s on a hunt for the brain’s “inner engineer,” the “actor” that decides how the brain should rewire itself to operate more efficiently. And now is a good time for the field, she says:

In neuroscience, we’re poised to start making some fundamental breakthroughs in understanding how the building blocks of the brain, the neurons, work together to perform computations and to learn.

Those insights will have big implications for society and medicine, Raymond explains:

If we can better understand how the brain learns, this will help us design better treatments for people with learning disabilities or people recovering from stroke…

It will help us design better education systems and it will help us design better machines that can more closely mimic the abilities of the human brain.

Learn more about Stanford Medicine’s Biomedical Innovation Initiative and about other faculty leaders who are driving biomedical innovation here.

Previously: Peering under the hood — of the brain, New findings on exactly why our “idle” brains burn so much fuel and A little noise in the brain’s wiring helps us learn

Behavioral Science, In the News, Mental Health, Public Health, Research

Green roofs are not just good for the environment, they boost productivity, study shows

Green roofs are not just good for the environment, they boost productivity, study shows

3079545066_67cba2e5a8_z

Boosting productivity can be as simple as looking at a grassy roof for just forty seconds, conclude researchers at the University of Melbourne. It’s been shown that contact with nature can relieve stress and improve concentration and mood, but this is one of the first studies to see if novel urban manifestations of greenery can have the same effect.

The study, published in the Journal of Environmental Psychology and led by Kate Lee of Melbourne’s Green Infrastructure Research Group, involved giving students a mindless computer task to do in a city office building with a brief break spent looking at a picture of either a lush green roof or bare concrete roof. Those who looked at the green one made significantly fewer mistakes and showed better concentration in the second half of the task. The study was based on the idea of “attention restoration” through microbreaks lasting under a minute, which happen spontaneously throughout the work day.

Lee is quoted in a press release:

We know that green roofs are great for the environment, but now we can say that they boost attention too. Imagine the impact that has for thousands of employees working in nearby offices… It’s really important to have micro-breaks. It’s something that a lot of us do naturally when we’re stressed or mentally fatigued. There’s a reason you look out the window and seek nature, it can help you concentrate on your work and to maintain performance across the workday.

Certainly this study has implications for workplace well-being and adds extra impetus to continue greening our cities. City planners around the world are switching on to these benefits of green roofs and we hope the future of our cities will be a very green one.

She and her team next plan to see if city greening makes people more helpful and creative, as well as productive.

Previously: Nature is good for you, right? and Out of office auto-reply: Reaping the benefits of nature
Photo by Jeremy Reding

Big data, BigDataMed15, Events, Medicine and Society, Research, Stanford News, Technology

A look back at Stanford’s Big Data in Biomedicine

A look back at Stanford's Big Data in Biomedicine

Ashley - 560

We reported many of the happenings at last week’s Big Data in Biomedicine here on Scope. Writer Bruce Goldman was also in attendance for the three-day event, and he captured the conversation in a just-published Inside Stanford Medicine piece.

Previously: At Big Data in Biomedicine, Stanford’s Lloyd Minor focuses on precision healthAt Big Data in Biomedicine, Nobel laureate Michael Levitt and others talk computing and crowdsourcingExperts at Big Data in Biomedicine: Bigger, better datasets and technology will benefit patientsOn the move: Big Data in Biomedicine goes mobile with discussion on mHealth and Big Data in Biomedicine panelists: Genomics’ future is bright
Photo of Euan Ashley, MD, welcoming conference attendees last Wednesday, by Saul Bromberger

Autism, Mental Health, Neuroscience, Research, Science, Stanford News, Stem Cells

Brain cell spheres in a lab dish mimic human cortex, Stanford study says

Brain cell spheres in a lab dish mimic human cortex, Stanford study says

ImageJ=1.49e

Mental disorders like autism and schizophrenia are notoriously difficult to study at the molecular level. Understandably, people are reluctant to donate pieces of living brain for study, and postmortem tissue lets researchers see the structure, but not the function, of the cells.

Now researchers in the laboratories of psychiatrist Sergiu Pasca, MD, and neurobiologist Ben Barres, PhD, have found a way to make balls of cells that mimic the activity of the human cortex. They use a person’s skin cells, so the resulting “human cortical spheroid” has the same genetic composition as the donor. The research was published in Nature Methods yesterday.

According to our release:

Previous attempts to create patient-specific neural tissue for study have either generated two-dimensional colonies of immature neurons that do not create functional synapses, or required an external matrix on which to grow the cells in a series of laborious and technically difficult steps.

In contrast, the researchers found they were able to easily make hundreds of what they’ve termed “human cortical spheroids” using a single human skin sample. These spheroids grow to be as large as 5 millimeters in diameter and can be maintained in the laboratory for nine months or more. They exhibit complex neural network activity and can be studied with techniques well-honed in animal models.

The researchers, which include neonatology fellow Anca Pasca, MD, and graduate student Steven Sloan, hope to use the technique to help understand how the human brain develops, and what sometimes goes wrong. As described by Barres:

The power and promise of this new method is extraordinary. For instance, for developmental brain disorders, one could take skin cells from any patient and literally replay the development of their brain in a culture dish to figure out exactly what step of development went awry — and how it might be corrected.

The research is starting to garner attention, including this nice article from Wired yesterday. Pasca’s eager to note, however, that he’s not working to create entire brains, which would be ethically and technically challenging, to say the least. But simply generating even a few of the cell types in the cortex will give researchers a much larger canvas with which to study some devastating conditions. As Pasca notes in our release:

I am a physician by training. We are often very limited in the therapeutic options we can offer patients with mental disorders. The ability to investigate in a dish neuronal and glial function, as well as network activity, starting from patient’s own cells, has the potential to bring novel insights into psychiatric disorders and their treatment.

Previously: More than just glue, glial cells challenge neuron’s top slot and Star-shaped cells nab new starring role in sculpting brain circuits
Photo of spheroid cross-section by Anca Pasca

Bioengineering, Research, Science, Stanford News

Fly-snatching robot speeds biomedical research

Fly-snatching robot speeds biomedical research

The drosophila hangs unharmed lifted by the robot’s suction tube.

It looks like nothing so much as a miniature UFO hovering over a plate of unsuspecting flies. When it’s ready to strike, it flashes a brief infrared blast of light that reflects off the animals’ backs, indicating the location of each insect. Then, a tiny, narrow suction tube strikes an illuminated thorax, painlessly sucking onto the fly and carrying it away.

It’s not the greatest new gadget to rid your kitchen of unwelcome pests, it’s the latest biomedical research tool from applied physicist Mark Schnitzer, PhD.

The flies in question are commonly studied in biology labs as a proxy for our own harder-to-access cells and organs. As I wrote in a press release:

Although flies and humans have obvious differences, in many cases our cells and organs behave in similar ways and it is easier to study those processes in flies than in humans. The earliest information about how radiation causes gene mutations came from fruit flies, as did an understanding of our daily sleep/waking rhythms. And many of the molecules that are now famous for their roles in regulating how cells communicate were originally discovered by scientists hunched over microscope staring at the unmoving bodies of anesthetized flies.

Until now, scientists have had to anesthetize the flies and painstakingly assess them by microscope. The robot and its machine vision can assess physical features more quickly and in finer detail than lab personnel and can carry out behavioral studies of awake flies.

I spoke with Joan Savall, PhD, a visiting scientist from the Howard Hughes Medical Foundation, who led the development of the robot. He says it will speed research because the robot is both faster and less sleepy that your average graduate student, but what’s really cool is that it opens up entirely new areas of research.

“In the end you can really push many fields at the same time,” he told me.

Previously: Thoughts light up with new Stanford-designed tool for studying the brain and New tool for reading brain activity of mice could advance study of neurodegenerative diseases
Image by Linda Cicero

Big data, BigDataMed15, Events, Precision health, Research, Stanford News, Technology

At Big Data in Biomedicine, Stanford’s Lloyd Minor focuses on precision health

At Big Data in Biomedicine, Stanford's Lloyd Minor focuses on precision health

Minor talking - 560

In the next decade, Stanford Medicine will lead the biomedical revolution in precision health, Dean Lloyd Minor, MD, told attendees of the final day of the Big Data in Biomedicine conference.

Involving all aspects of Stanford Medicine — including research and patient care — the focus on precision health will draw on Stanford’s existing strengths while propelling the development of new discoveries and transforming health-care delivery, Minor explained.

The choice of “precision health” rather than “precision medicine” is deliberate and a distinction that is reflective of Stanford’s leadership role. While both precision health and precision medicine are targeted and personalized, precision health is proactive, with an emphasis on maintaining health. In contrast, precision medicine is reactive, with a focus on caring for the sick. Precision health includes prediction and prevention; precision medicine involves diagnosis and treatment.

Minor used the model of a tree to describe Stanford’s focus on precision health.

Basic research and biomedical data science form the trunk, the foundation that supports the entire endeavor. Nine “biomedical platforms” form the major branches; these platforms include immunology, cancer biology and the neurosciences, among others. The tree’s leaves are its clinical core, with treatment teams in cardiac care, cancer and maternal and newborn health, for example.

The growth of the tree, its tippy top, is fueled by predictive, preventative and longitudinal care — where innovations in knowledge and care drive further changes in the future of health-care.

Minor made two key points about the tree, and its implications for research and care at Stanford.

First, the tree is big and growing. “There is room for everyone on the tree,” he said. “That is one thing that will make this plan — this tree — so powerful.”

Secondly, the tree is ever-changing. “Care will be analyzed and fed back. That’s really the true heart and meaning of the learning health-care system,” Minor said. “Every encounter is part of a much bigger whole.”

The entire effort will be fueled by big data, Minor said. To recognize its importance, and help train future leaders, Stanford Medicine also plans to create a new biomedical data science Department.

“We’re poised to lead,” Minor said. “We build upon a history of innovation, an entrepreneurial mindset, visionary faculty and students and a culture of collaboration.”

Previously: Big Data in Biomedicine conference kicks off todayStanford Medicine’s Lloyd Minor on re-conceiving medical education and Meet the medical school’s new dean: Lloyd Minor
Photo by Saul Bromberger

Big data, BigDataMed15, Events, Medicine and Society, Microbiology, Research, Technology

At Big Data in Biomedicine, Nobel laureate Michael Levitt and others talk computing and crowdsourcing

At Big Data in Biomedicine, Nobel laureate Michael Levitt and others talk computing and crowdsourcing

Levitt2Nobel laureate Michael Levitt, PhD, has been using big data since before data was big. A professor of structural biology at Stanford, Levitt’s simulations of protein structure and movement have tapped the most computing power he could access in his decades-long career.

Despite massive advances in technology, key challenges remain when using data to answer fundamental biological questions, Levitt told attendees of the second day of the Big Data in Biomedicine conference. It’s hard to translate gigabytes of data capturing a specific biological problem into a form that appeals to non-scientists. And even today’s supercomputers lack the ability to process information on the behavior of all atoms on Earth, Levitt pointed out.

Levitt’s address followed a panel discussion on computation and crowdsourcing, featuring computer-science specialists who are developing new ways to use computers to tackle biomedical challenges.

Kunle Olukotun, PhD, a Stanford professor of electrical engineering and computer science, had advice for biomedical scientists: Don’t waste your time on in-depth programming. Instead, harness the power of a domain specific language tailored to allow you to pursue your research goals efficiently.

Panelists Rhiju Das, PhD, assistant professor of biochemistry at Stanford, and Matthew Might, PhD, an associate professor of computer science at the University of Utah, have turned to the power of the crowd to solve problems. Das uses crowdsourcing to answer a universal problem (folding of RNA) and Might has used the crowd for a personal problem (his son’s rare genetic illness).

For Das, an online game called Eterna – and its players – have helped his team develop an algorithm that much more accurately predicts whether a sequence of RNA will fold correctly or not, a key step in developing treatments for diseases that use RNA such as HIV.

And for Might, crowdsourcing helped him discover other children who, like his son Bertrand, have an impaired NGLY1 gene. (His story is told in this New Yorker article.)

Panelist Eric Dishman, general manager of the Health and Life Sciences Group at Intel Corporation, offered conference attendees a reminder: Behind the technology lies a human. Heart rates, blood pressure and other biomarkers aren’t the only trends worth monitoring using technology, he said.

Behavioral traits also offer key insights into health, he explained. For example, his team has used location trackers to see which rooms elderly people spend time in. When there are too many breaks in the bathroom, or the person spends most of the day in the bedroom, health-care workers can see something is off, he said.

Action from the rest of the conference, which concludes today, is available via live-streaming and this app. You can also follow conversation on Twitter by using the hashtag #bigdatamed.

Previously: On the move: Big Data in Biomedicine goes mobile with discussion on mHealthGamers: The new face of scientific research?, Half-century climb in computer’s competence colloquially captured by Nobelist Michael Levitt and Decoding proteins using your very own super computer
Photo of Michael Levitt by Saul Bromberger

Big data, BigDataMed15, Events, Patient Care, Research, Stanford News, Technology

Experts at Big Data in Biomedicine: Bigger, better datasets and technology will benefit patients

Experts at Big Data in Biomedicine: Bigger, better datasets and technology will benefit patients

population health panelThe explosion of big data is transforming the way those in health care are diagnosing, treating and preventing disease, panelists at the Big Data in Biomedicine said on its opening day.

During a five-member panel on population health, experts outlined work that is currently being done but said even bigger datasets and better technology are needed to ramp up the benefits from digital data and to save lives.

“Using the end-of-millions to inform care for the end-of-one – that is exactly where we’re going,” said Tracy Lieu, MD, MPH, director of research at Kaiser Permanente Northern California, a health-care network that includes 21 hospitals, 8,000 physicians and 3.6 million patients. “And we think that in a population like ours, in an integrated system like ours, we are in an ideal setting to do personalized medicine.”

Stanford Medicine professor Douglas Owens, MD, director of the Center for Health Policy and Center for Primary and Outcomes Research, led the panel on Wednesday. He said that big data is also changing how research is being conducted.

“There’s been an explosion of data of all kinds: clinical data, genomics data, data about what we do and how we live,” said Owens. “And the question is how can we best use that data to improve the health of the individual and to improve the health of populations.”

Lieu said two key trends are central to medical researchers: informatics and genomics. She told attendees that Kaiser utilizes a “virtual data warehouse” with the digital data of 14 million patients dating back to 1960. But Lieu cautioned that the data are not always the means to an end, particularly if the findings are not tested and implemented.

“Sometimes we fail. And we fail when we identify a problem of interest, we make a decision to study it, we assemble the data, we analyze and interpret the results – and then we send them off to journals. So we fail to close the loop,” she said, because researchers typically don’t go beyond the publication of data.

Lieu said Kaiser is now focused on trying to close that loop. “To do that, we need the kinds of tools that you in this group and the speakers at this conference are developing,” she explained. “We need better and better technology for rapidly analyzing and aggregating data.”

Continue Reading »

Biomed Bites, Cancer, Genetics, Microbiology, Research, Videos

Packed and ready to go: The link between DNA folding and disease

Packed and ready to go: The link between DNA folding and disease

Welcome to Biomed Bites, a weekly feature that introduces readers to some of Stanford’s most innovative researchers.

In cells, DNA doesn’t make a lovely, languid helix as popularly depicted. It’s scrunched up, bound with proteins that smoosh one meter of DNA into just one micrometer, a millionth of its size. DNA wound around proteins form a particle called a nucleosome.

Yahli Lorch, PhD, associate professor of structural biology, has studied nucleosomes since they were first discovered more than 20 years ago, as she mentions in the video above:

When I began working on the nucleosome, it was a largely neglected area since most people considered it just a packaging and nothing beyond that.

Since I discovered that it has a role and a very important role in the regulation of gene expression, the field has grown many fold and it’s one of the largest areas in biology now.

Many diseases have been linked to the packaging of DNA, including neurodegenerative diseases, autoimmune diseases and several types of cancer such as some pancreatic cancers. Enhancing the understanding of the basic biology of DNA folding is leading to new and improved treatments for these conditions, Lorch says.

Learn more about Stanford Medicine’s Biomedical Innovation Initiative and about other faculty leaders who are driving biomedical innovation here.

Previously: DNA origami: How our genomes fold, DNA architecture fascinates Stanford researcher — and dictates biological outcomes and More than shiny: Stanford’s new sculpture by Alyson Shotz

Stanford Medicine Resources: