Published by
Stanford Medicine

Category

Stanford News

Cardiovascular Medicine, Chronic Disease, In the News, Research, Science, Stanford News

How best to treat dialysis patients with heart disease

How best to treat dialysis patients with heart disease

523392_4923732760_zKidney failure patients on dialysis often have other chronic diseases – heart disease topping the list. They’re prescribed an average of 12 pills a day by physicians, according to Stanford nephrologist Tara Chang, MD, and they spend three-to-four hours at a treatment center three times a week connected to an artificial kidney machine.

For Chang, this makes it all the more important that any medication she prescribes for a patient on dialysis is both essential and effective.

The problem is, particularly in the case of treating kidney patients with heart disease, evidence-based treatment guidelines just aren’t available. Kidney doctors are left making best guesses based on guidelines written for the general population.

“Our patients might be different from patients not on dialysis,” said Chang. “Dialysis patients have a lot of heart disease, yet rarely does a cardiology study enroll patients on dialysis, so we just don’t know.”

This was part of the motivation behind Chang’s most recent study examining the use of anti-platelet drugs such as clopidogrel, one of the most commonly prescribed drugs for kidney patients. The researchers looked at the use of anti-platelet medications such as clopidogrel as treatment following stenting procedures to unclog arteries in the heart in 8,458 dialysis patients between 2007 and 2010. The data suggests that longer-duration of drug use may be of benefit to patients on dialysis who get drug-eluding stents but not those who get bare metal stents. Chang told me:

We found that for those who got drug-eluting stents who took the drug for 12 months compared to those who had stopped the drug at some earlier time point, there was a non-statistically significant trend towards lower risks of death and heart attacks. So for this group, following the same guidelines as for the general population may be appropriate. However, we found no indication of benefit with longer duration of anti-platelet drug use for patients on dialysis who got bare metal stents.

About half of the 400,000 patients in the U.S. on dialysis also have coronary artery disease, as referenced in the study. The number of those getting stents inserted to unclog arteries also has increased 50 percent in the past decade, the study states. The results of the study, while not definitive as to exactly how long doctors should prescribe the drug, does stress the need for more clinical research on patients with kidney failure to provide guidance on treatment strategies for heart disease.

“Because our study was not a randomized trial,” said Chang, “we tried to be very measured in how we interpreted the results. What it does point to is the fact that we can’t assume that what works in non-dialysis patients works in dialysis patients. Hopefully our study will help convince researchers to include our dialysis patients in their studies.”

The paper was published this week in the Journal of the American Heart Association.

Previously: Keeping kidney failure patients out of the hospitalStudy shows higher rates of untreated kidney disease among older adults and Study shows daily dialysis may boost patients’ heart function, physical health.
Photo by newslighter

Autoimmune Disease, Chronic Disease, Immunology, Stanford News, Videos

Unbroken: A chronic fatigue patient’s long road to recovery

Unbroken: A chronic fatigue patient’s long road to recovery

“Fatigue is what we experience, but it is what a match is to an atomic bomb,” said Laura Hillenbrand, the author of Unbroken, about how it feels to live with chronic fatigue syndrome.

I recently finished a Stanford Medicine story and video (above) about another CFS patient, “Erin,” who asked that her real name not be used. After an acute illness in rural Mexico, Erin went from being an elite soccer player to one of the 17 million people worldwide who suffer from the condition.

Most people who acquire hit-and-run infections go back to their normal lives after a few days. But these patients don’t. They become virtual shut-ins, prisoners of a never-ending cycle of flu-like symptoms, many of them bedridden for years. CFS, also called myalgic encephalomyelitis or ME/CFS, has no known cause or cure, frustrating both patients and physicians.

What makes Erin’s CFS story somewhat rare is its happy ending. With the help of Stanford infectious disease expert José Montoya, MD, and cardiac electrophysiologist Karen Friday, MD, Erin is back to working fulltime and playing soccer.

“Dr. Montoya and doctors like him are heroes for taking up an unpopular disease and patients that most doctors shun,” said Lori Chapo-Kroger, a registered nurse and CEO of the patient charity, PANDORA Org. “He combines his medical expertise and a creative approach with a truly caring heart for suffering patients.”

Dr. Montoya is also collaborating with immunologist Mark Davis, PhD, on the Stanford Initiative on Infection-Associated Chronic Diseases, a research project using cutting-edge technologies to identify the biomarkers and root causes of ME/CFS. Working at the Human Immune Monitoring Center, team members are searching 600 blood samples for infectious microbes, inflammation-related molecules and genetic flaws. In addition, they’re conducting brain scans and physical exams to look for physical abnormalities among these patients.

Early results are promising — the team has discovered a number of measurable biological markers that indicate that ME/CFS patients may be suffering from out-of-control inflammation.

The team’s goal: To find out what is wrong with the immune systems of patients with infection-triggered diseases such ME/CFS and Lyme disease, then figure out how to help them get better.

Previously: Deciphering the puzzle of chronic fatigue syndrome

The HIMC is partially funded by Spectrum, Stanford’s NIH Clinical and Translational Science Award.

Health Costs, Health Policy, Medicine and Society, Public Health, Research, Stanford News

Competition keeps health-care costs low, Stanford study finds

Competition keeps health-care costs low, Stanford study finds

The term market competition usually sparks a mental image of business suits and ties, not white coats and stethoscopes. Yet even the health-care system plays by the rules of the economic market place.

A new study, conducted by Stanford researchers Laurence Baker, PhD; M. Kate Bundorf, PhD; and colleagues, provides important evidence that less competitive health-care markets are more likely to charge higher prices for office visits. The article was published today in The Journal of the American Medical Association.

There’s a push through the private sector and through Medicare to encourage the formation of larger practices, which could improve the efficiency of the health-care system, said Bundorf.  The researchers sought to understand what effect these larger practices have on health-care spending.

To make the comparisons, the researchers used a database to establish the prices paid by PPOs for the most commonly billed office visits within 10 physician specialties. Next, they adapted a standard economic competition measure to calculate physician practice competition for different U.S. regions.

As I wrote in a release today:

Studying a measure that averaged prices across multiple types of office visits, in their most conservative model, being in the top 10 percent of areas with the least competition was associated with 3.5 to 5.4 percent higher mean price. The researchers point out that in 2011, privately insured individuals in the United States spent nearly $250 billion on physician services. In that context, these small percentage increases could translate to tens of billions of dollars in extra spending.

The study’s findings show the importance of developing policies that will encourage a balance between the quality of care and health-care spending. As Baker explained, “Sometimes it can be tempting to say our goals for the health care system should be only about taking care of patients and doing it as well as possible – we don’t want to worry about the economics. But the truth is we do have to worry about the prices because the bill does come even if you wish it wouldn’t.”

Previously: What’s the going rate? Examining variations in private payments to physicians

NIH, Research, Science Policy, Stanford News

Shake up research rewards to improve accuracy, says Stanford’s John Ioannidis

Shake up research rewards to improve accuracy, says Stanford's John Ioannidis

currencyLab animals such as mice and rats can be trained to press a particular lever or to exhibit a certain behavior to get a coveted food treat. Ironically the research scientists who carefully record the animals’ behavior really aren’t all that different. Like mice in a maze, researchers in this country are rewarded for specific achievements, such as authoring highly cited papers in big name journals or overseeing large labs pursuing multiple projects. These rewards come in the form of promotions, government grants and prestige among a researcher’s peers.

Unfortunately, the achievements do little to ensure that the resulting research findings are accurate. Stanford study-design expert John Ioannidis, MD, DSci, has repeatedly pointed out serious flaws in much published research (in 2005 he published what was to be one of the most highly-accessed and most highly-cited papers ever in the biomedical field “Why most published research findings are false”).”

Today, Ioannidis published another paper in PLoS Medicine titled “How to make more published research true.” He explores many topics that could be addressed to improve the reproducibility and accuracy of research. But the section that I found most interesting was one in which he argues for innovative, perhaps even disruptive changes to the scientific reward system. He writes:

 The current system does not reward replication—it often even penalizes people who want to rigorously replicate previous work, and it pushes investigators to claim that their work is highly novel and significant. Sharing (data, protocols, analysis codes, etc.) is not incentivized or requested, with some notable exceptions. With lack of supportive resources and with competition (‘‘competitors will steal my data, my ideas, and eventually my funding”) sharing becomes even disincentivized. Other aspects of scientific citizenship, such as high-quality peer review, are not valued.

Instead he proposes a system in which simply publishing a paper has no merit unless the study’s findings are subsequently replicated by other groups. If the results of the paper are successfully translated into clinical applications that benefit patients, additional “currency” units would be awarded. (In the example of the mice in the maze, the currency would be given in the form of yummy food pellets. For researchers, it would be the tangible and intangible benefits accrued by those considered to be successful researchers). In contrast, the publication of a paper that was subsequently refuted or retracted would result in a reduction of currency units for the authors. Peer review and contributions to the training and education of others would also be rewarded.

The concept is really intriguing, and some ideas would really turn the research enterprise in this country on its head. What if a researcher were penalized (fewer pellets for you!) for achieving an administrative position of power… UNLESS he or she also increased the flow of reliable, reproducible research? As described in the manuscript:

[In this case] obtaining grants, awards, or other powers are considered negatively unless one delivers more good-quality science in proportion. Resources and power are seen as opportunities, and researchers need to match their output to the opportunities that they have been offered—the more opportunities, the more the expected (replicated and, hopefully, even translated) output. Academic ranks have no value in this model and may even be eliminated: researchers simply have to maintain a non-negative balance of output versus opportunities. In this deliberately provocative scenario, investigators would be loath to obtain grants or become powerful (in the current sense), because this would be seen as a burden. The potential side effects might be to discourage ambitious grant applications and leadership.

Ioannidis, who co-directs with Steven Goodman, MD, MHS, PhD, the new  Meta-Research Innovation Center at Stanford, or METRICS, is quick to acknowledge that these types of changes would take time, and that the side effects of at least some of them would likely make them impractical or even harmful to the research process. But, he argues, this type of radical thinking might be just what’s needed to shake up the status quo and allow new, useful ideas to rise to the surface.

Previously: Scientists preferentially cite successful studies, new research shows, Re-analyses of clinical trial results rare, but necessary, say Stanford researchers  and John Ioannidis discusses the popularity of his paper examining the reliability of scientific research
Photo by Images Money

Behavioral Science, Mental Health, Public Health, Stanford News

“Every life is touched by suicide:” Stanford psychiatrist on the importance of prevention

in-a-lonely-place-fa873a88-0c57-4b11-8f84-58c09aab94acMost people shy away from talking about suicide. Me too – I have some personal ties to the topic that still stab every time the s-word comes up. Yet after the initial reluctance wears off, that pain from grief and anger and fear turns into a motivational jab. Let’s talk about suicide nonstop. Let’s talk to make it stop.

Laura Roberts, MD, who leads Stanford’s psychiatry department, had the opportunity as editor-in-chief of the journal Academic Psychiatry to focus attention on suicide prevention. And she took it – partnering with the Wisconsin-based Charles E. Kubly Foundation to produce a special package of articles to inform clinicians about the latest efforts to prevent suicide.

Roberts and I spoke recently about the special issue and about suicide prevention:

Why did you want to publish this issue?

Suicide is such an under-recognized phenomenon, and it is an urgent threat to public health. Mental illness affects one in five people. Each year, more than 36,000 people commit suicide in the U.S. That is one person every fifteen minutes. In rough numbers, that’s twice the number of people who die from a violent injury in this country. Really, every life is touched by suicide.

Despite their serious public-health impact and life-threatening nature, illnesses and conditions associated with suicide have received little attention in society. These conditions are poorly understood and so greatly stigmatized. Learning to understand and evaluate people at risk for self-harm is an important element of medical student and resident education — we really wanted to emphasize these topics in this special collection.

New evidence-based models for prevention of suicide are emerging and inspire optimism. Integrating these new models is an exciting challenge for medical educators. Papers in this collection also document the impact of suicide and suicidal behavior among medical students and graduate students. About 350 physicians commit suicide each year in the U.S., and recently two interns in New York City ended their lives shortly after entering residency training. This is devastating.

In our special issue, a systematic review highlights the observation that psychiatry residents commonly experience the death of a patient by suicide, and three articles address coping with suicide professionally. Several articles focus on the development of educational programs that help strengthen suicide prevention, including screening skills and suicide awareness and management. Two articles address the resources and experience of from the Department of Veterans Affairs.

The journal special issue underscores there is much we can do in medical education to foster understanding and strengthen our responses to the phenomenon of suicide. Taken together, the papers also show how important it is that academic leaders better educate other about the prevention and impact of suicide.

What have we learned about preventing suicide?

We have learned a great deal about the prevention of suicide. Population data have shown that certain subgroups are especially vulnerable to suicide, including, for example, older white men who are ill and live alone, Native American youth as they make the transition to adulthood, and people living with serious illnesses that cause great physical and emotional pain. Understanding these larger population patterns has done a lot to help raise awareness of suicide and has allowed for creative interventions to address this problem.

Recently, researchers have been pursuing neurobiological markers that may signal when an individual is most at-risk for attempting suicide. Other studies are connecting other aspects of health — such as healthy sleep and exercise — to protective factors that may help diminish the likelihood of suicide. Such innovative work is very much needed because it will help us understand when a person with latent risk factors for suicide may act on this impulse, or, alternatively, how we can better support and intervene.

Other recent work has focused on psychological and situational factors that may contribute to suicidality among young veterans, and again, this line of inquiry may give us greater understanding on how best to reduce suicide deaths. As you may know, the number of veteran deaths due to suicide have been devastating. The VA has shown immense concern for members of the military and young veterans returning from conflicts around the world. In the course of studying suicide in this population, we have begun to have greater insight into when and whether an individual will act on an impulse to end his life. Three factors appear to be in play: first, a predisposition or vulnerability, for example, the presence of depression or anxiety that increases the general risk of suicide; second, access to a way to end one’s life, such as a gun; and, third an experience or set of experiences that make the individual feel like he is out of place, isn’t part of things, and doesn’t belong — what’s referred to as “thwarted belongingness.”

We are getting parts of the problem figured out, but so much more scientific investigation is needed. Ironically, suicide has been understudied because of concerns that the population is too vulnerable to be included in human research studies and because of the stigma associated with suicide. There have been so many barriers to these studies, and it strikes me as doubly tragic that suicide takes so many lives and yet has been relatively neglected by society and by science. In the Department of Psychiatry and Behavioral Sciences at Stanford, we are working to turn this around.

Continue Reading »

Immunology, Infectious Disease, Microbiology, Public Health, Research, Stanford News

Paradox: Antibiotics may increase contagion among Salmonella-infected animals

Paradox: Antibiotics may increase contagion among Salmonella-infected animals

cattleMake no mistake: Antibiotics have worked wonders, increasing human life expectancy as have few other public-health measures (let’s hear it for vaccines, folks). But about 80 percent of all antibiotics used in the United States are given to livestock – chiefly chickens, pigs, and cattle – at low doses, which boosts the animals’ growth rates. A long-raging debate in the public square concerns the possibility that this widespread practice fosters the emergence of antibiotic-resistant bugs.

But a new study led by Stanford bacteriologist Denise Monack, PhD, and just published in Proceedings of the National Academy of Sciences, adds a brand new wrinkle to concerns about the broad administration of antibiotics: the possibility that doing so may, at least  sometimes, actually encourage the spread of disease.

Take salmonella, for example. One strain of this bacterial pathogen, S. typhimurium, is responsible for an estimated 1 million cases of food poisoning, 19,000 hospitalizations and nearly 400 deaths annually in the United States. Upon invading the gut, S. typhimurium produces a potent inflammation-inducing endotoxin known as LPS.

Like its sister strain S. typhi (which  causes close to 200,00o typhoid-fever deaths worldwide per year), S. typhimurium doesn’t mete out its menace equally. While most get very sick, it is the symptom-free few who, by virtue of shedding much higher levels of disease-causing bacteria in their feces, account for the great majority of transmission. (One asymptomatic carrier was the infamous Typhoid Mary, a domestic cook who, early in the 20th century, cheerfully if unknowingly spread her typhoid infection to about 50 others before being forcibly, and tragically, quarantined for much of the rest of her life.)

You might think giving antibiotics to livestock, whence many of our S. typhi-induced food-poisoning outbreaks derive, would kill off the bad bug and stop its spread from farm animals to those of us (including me) who eat them. But maybe not.

From our release on the study:

When the scientists gave oral antibiotics to mice infected with Salmonella typhimurium, a bacterial cause of food poisoning, a small minority — so called “superspreaders” that had been shedding high numbers of salmonella in their feces for weeks — remained healthy; they were unaffected by either the disease or the antibiotic. The rest of the mice got sicker instead of better and, oddly, started shedding like superspreaders. The findings … pose ominous questions about the widespread, routine use of sub-therapeutic doses of antibiotics in livestock.

So, the superspreaders kept on spreading without missing a step, and the others became walking-dead pseudosuperspreaders. A lose-lose scenario all the way around.

“If this holds true for livestock as well – and I think it will – it would have obvious public health implications,” Monack told me. “We need to think about the possibility that we’re not only selecting for antibiotic-resistant microbes, but also impairing the health of our livestock and increasing the spread of contagious pathogens among them and us.”

Previously: Did microbes mess with Typhoid Mary’s macrophages?, Joyride: Brief post-antibiotic sugar spike gives pathogens a lift and What if gut-bacteria communities “remember” past antibiotic exposures?
Photo by Jean-Pierre

Cancer, Patient Care, Stanford News

Pioneering cancer nurses guide patients through maze of care

Pioneering cancer nurses guide patients through maze of care

cancer-birminghamLearning you have cancer is a life-changing diagnosis. Even after the initial shock wears off, the gauntlet of medical care necessary to manage the disease can be overwhelming and confusing. At the Stanford Cancer Center, a new program that partners experienced nurses with newly diagnosed cancer patients aims to help the patients navigate the convoluted path their medical care can take.

A recent story in the Stanford Medicine Newsletter profiled Laura Birmingham, RN, (on the left, with cancer patient Sharron Brockman) and Vitale Battaglini, RN, who founded the new program. Birmingham coordinates care for patients with gynecological cancers and Battaglini works with head and neck cancer patients. They are the first people at the Stanford Cancer Center that patients meet and they stay in touch via phone calls, text messages and emails in between patient visits. The staff explained the benefits of a one-on-one program:

“Someone newly diagnosed doesn’t know what to expect, and things that seem basic to us are new to them. Our job is to be their first and main point of contact,” Battaglini said. “It’s a reversal of the traditional nurse’s role: We are the patient’s nurse, not the doctor’s nurse. And what the patient needs depends on that particular patient.”

“Cancer care has become so complex because it involves so many subspecialties,” said Julie Kuznetsov, director of the Cancer Patient Experience, who oversees the new program. “The field continues to evolve with new technologies and specialized expertise. While that means more options and better outcomes, for patients it has become more difficult to put the pieces together to coordinate their care.”

In Birmingham’s words, “Our role is to act as an agent of change in terms of the patient experience.” There are about 18 patients in the program, but that number is expected to grow quickly.

Previously: Stanford researchers examine disparities in use of quality cancer centers and Director of the Stanford Cancer Institute discusses advances in cancer care and research
Photo by Norbert von der Groeben

Immunology, Mental Health, Stanford News

Stanford Medicine magazine traverses the immune system

Stanford Medicine magazine traverses the immune system

cover_fall2014_2If you want to understand the human immune system, try studying humans – not mice. That’s what Mark Davis, PhD, urges in a special report on the immune system in the new issue of Stanford Medicine magazine.

For decades, most research on the immune system has used mice. Davis, director of Stanford’s Institute for Immunology, Transplantation and Infection, launched Stanford’s Human Immune Monitoring Center a few years ago to change the immunology research paradigm.

“Inbred mice have not, in most cases, been a reliable guide for developing treatments for human immunological diseases,” Davis says in the special report, titled “Balancing act: The immune system.”

As the editor of the magazine, I wanted to feature a story that showed how human-focused immunology research plays out. So I was glad to learn that the center is in the midst of its largest study so far – one to figure out the cause of chronic fatigue syndrome. A team led by Stanford professor of infectious diseases José Montoya, MD, is looking for meaningful patterns in the components of blood samples gathered from 200 patients with chronic fatigue syndrome and 400 healthy subjects.

“It’s like dumping a hundred different puzzles on the floor and trying to find two pieces that fit,” Davis says in our story. We also have a video about a patient’s seven-year battle with chronic fatigue, from despair to recovery.

Also covered in this issue:

  • “I can eat it”: on a revolutionary treatment for food allergies
  • “Brain attack”: on the struggle to help children with psychiatric illness caused by a malfunctioning immune system – a condition known as PANS or PANDAS
  • “When bones collide”: on a new view on the cause of osteoarthritis: autoinflammation
  • “My rendezvous with insanity”: a Q&A with Susannah Cahalan, author of Brain on Fire: My Month of Madness, her memoir of surviving an autoimmune attack on her brain
  • “The swashbuckler”: on look back to the early days of molecular biology when Mark Davis cracked one of the greatest mysteries of the immune system

The issue also includes an article on efforts at the VA Palo Alto Health Care System to use peer-support services to help veterans with post-traumatic stress disorder, and a story on the growing concern that biomedical research results are often erroneous and efforts being made to solve the problem.

The issue was funded in part by the Institute for Immunology, Transplantation and Infection.

Previously: Stanford Medicine magazine opens up the world of surgery, Mysteries of the heart: Stanford Medicine magazine answers cardiovascular questions and From womb to world: Stanford Medicine Magazine explores new work on having a baby.
Illustration by Jeffrey Decoster

Stanford News

Weathering heights: Crane operator makes the climb for hospital expansion

image_0.img.320.highMeet  A.J. Barker, second-generation crane operator extraordinaire, who’s currently working on the new Lucile Packard Children’s Hospital Stanford from 16 stories in the air.

In a Stanford Medicine News article, Barker described his workday:

“You have to pay attention at all times,” he said. “There’s no room for error when you are flying iron and sending a load weighing thousands of pounds over to guys who are standing five stories high on beams that are 8 inches wide.”

After climbing up to the cabin, Barker starts each shift with a safety inspection of the equipment on the counter-jib behind the cabin, eyeballing the hoist cable for signs of stress, lubricating the moving parts, and checking the tension on the tower section’s bolts and lattice. He’ll go over the plans with the signalmen for safety and efficiency, and discuss options for flying the loads. The crane operates in all weather, except in very high wind or lightning storms.

Then he stays there for eight to nine hours, “flying iron” at the directions of folks on the ground. Barker, 36, learned from his dad, mastering the basics by the time he was 10. It’s a blend of physics, communication and a lack of fear of heights. “I have the coolest office view, and it changes all the time,” Barker said.

He’s proud to work on the Packard expansion, to construct a building designed to help children and families.

I never knew a person operated cranes from high in the sky. Now, thanks to Barker, I can chat about jib length and admire skilled gingerbread placement.

Previously: A trip down memory lane: Stories from the early days of the School of Medicine. Image of the Week: Digging in at the Stanford Hospital & Clinics groundbreaking and A new chapter for Stanford Hospital 
Photo by L.A. Cicero

Aging, Neuroscience, Stanford News, Stroke, Videos

Stanford expert responds to questions about brain repair and the future of neuroscience

Stanford expert responds to questions about brain repair and the future of neuroscience

One cool thing about being at Stanford is access to really, really smart people. Case in point, I get to work with William Newsome, PhD, who, in addition to doing really interesting neuroscience research, co-leads the group that made recommendations to the national BRAIN Initiative, and also directs the new Stanford Neurosciences Institute. He has a lot of insight into the state of neuroscience, where the field is headed, and what challenges scientists face in trying to better understand the brain and develop new therapies.

Newsome recently participated in an Open Office Hours, in which Stanford faculty take questions through Facebook, essentially opening their office doors to anyone with questions. He later recorded answers to those questions in the video above.

In addition to the full- length video, we’ve been posting short excerpts on Facebook. In this clip, Newsome discusses the dynamic nature of our brain’s connections. As he explains, the brain can switch connectivity to let us have one set of behaviors with our boss and another with our spouse.

In today’s installment, Newsome discusses efforts to repair nerves that are damaged in stroke, spinal cord injuries, traumatic brain injuries or other conditions. Stroke is of particular interest right now – the Neurosciences Institute that Newsome leads recently announced the creation of an interdisciplinary consortium at Stanford focused on stroke as one of their Big Ideas in Neuroscience.

In that segment, Newsome points out that nerves of our arms or legs, the so-called peripheral nervous system, can regrow if they get damaged. If you cut your finger, the nerves regrow. If you have a stroke or damage your spinal cord, the nerves don’t regrow. Newsome said:

What’s the difference between the central nervous system and the peripheral nervous system such that the central nervous system does not regrow most of the time yet the peripheral nervous system does? … When we get that knowledge the hope is that we’ll be able to set the conditions right for regrowth when there’s an injury and we’ll actually be able to help people recover function.

Previously: Deciphering “three pounds of goo” with Stanford neurobiologist Bill Newsome, Open Office Hours: Stanford neurobiologist taking your questions on brain research, Neuroscientists dream big, come up with ideas for prosthetics, mental health, stroke and more, Co-leader of Obama’s BRAIN Initiative to direct Stanford’s interdisciplinary neuroscience institute and Brain’s gain: Stanford neuroscientist discusses two major new initiatives

Stanford Medicine Resources: