Skip to content

Mathematical technique used to identify bladder cancer marker

A just-published Stanford study, during which researchers used an innovative mathematical technique to find markers that effectively predict how deadly a cancer will be, could lead to faster, less expensive and more accurate ways to analyze bladder cancer risk and to treat the disease. My colleague explains more in a release:

...This is the first study in which a special Stanford-designed computer algorithm was used to identify a clinically prognostic marker from public databases, though the search tool was introduced in a paper published two years ago that established its effectiveness in identifying markers in mice.

Bladder cancer is the sixth most common malignancy and is responsible for about 15,000 deaths per year in the United States. Currently, the severity and aggressiveness of bladder cancer is gauged by a pathologist who inspects a sample of the cancer tissue in the laboratory. This approach requires time and the expertise of a pathologist with special training. “This approach is very subjective and can result in conflicting reports from expert pathologists,” said Debashis Sahoo, PhD, one of three lead authors of the paper and an instructor of pathology at Stanford. The new research offers the promise of an easy, antibody-based test that can be used by someone with little training to quickly determine whether a bladder cancer is of the most dangerous type.

Allowing clinicians to evaluate the risk of individual tumors based on their molecular characteristics will have profound impact on the health care of bladder cancer patients, the researchers said. “Currently there is no way so to predict if a patient has the less- or more-aggressive subtype of bladder cancer early on,” said Jens-Peter Volkmer, MD, another first author of the paper and a postdoctoral scholar at Stanford. “This technique might be used to identify the patients with the more-aggressive subtype before the cancer becomes invasive or metastatic.”

The study appears online in the Proceedings of the National Academy of Sciences.

Popular posts