Skip to content

New genetic study: More evidence for modern Ashkenazi Jews’ ancient Hebrew patrimony

I hail from the so-called Ashkenazi branch of Jews, who account for the great majority of all Jews in the world today. Ashkenazis are distinguished by the historical fact that, over the last couple of thousand years or so, they propagated throughout Europe, generating and maintaining tens of thousands of distinctly Jewish communities in diverse countries spanning the entire continent. My dad was born in Lithuania; my mom's mom came from an Eastern European region that has belonged to any one of about a half-dozen countries, depending on what particular year you happen to be talking about; and my mom's dad grew up in Russia, near the Black Sea.

Tradition holds, though, that Ashkenazi Jews ultimately trace their origins straight back to ancient Israel, whence most Jews were expelled en masse in 70 CE by their Roman conquerors and sent skittering to all parts of the globe. (Jews who initially fled to Spain and Portugal are referred to as Sephardic. Those who took up residence in Iran, Iraq and Northern Africa are designated as Mizrahi.)

But in the late 1970s I read what was then a recent book titled The Thirteenth Tribe, written by polymath Arthur Koestler, advancing a theory that today's Ashkenazis descend not from the Holy Land but, rather, from Khazaria, a medieval Turkic empire in the Causasus region whose royals, caught between the rock of Islam and the hard place of Christendom, chose the politically expedient course of converting to Judaism. That hypothesis has become highly politicized, with some groups holding that Ashkenazis, who constitute half of Israel's current population, are colonialist interlopers with zero historical claim to the land of Israel.

Plausible at the time, the Khazar-origin premise has crumbled under the onslaught of modern molecular genetics. The latest volley: a study published this week in Nature Communications. The study's senior author, Stanford geneticist Peter Underhill, PhD, works in the lab of  Carlos Bustamante, PhD, whose high-resolution techniques have highlighted the historical hopscotch of other migratory peoples.

Underhill, Bustamante and their co-authors analyzed the Y chromosome - a piece of the human genome invariably handed down father-to-son - of a set of Ashkenazi men claiming descent from Levi,  the founder of one of the Twelve Tribes of Israel. (Names such as Levy, Levine and Levitt, for example, bespeak a Levite heritage.)

If Ashkenazis were the spawn of Khazar royals, their DNA would show it. But those Y chromosomes were as Levantine as a levant sandwich. The same genetic "signature" popped up on every Levite sampled (as well as a significant number of non-Levite Ashkenazis), strongly implying descent from a single common ancestor who lived in the Fertile Crescent between 1,500 and 2,500 years ago. That signature is absent in the Y chromosomes of modern European non-Jewish men, and in male inhabitants of what was once Khazaria.

Yes, 2,000 years is a long time, and a fellow gets lonely. Genetic studies of mitochrondria - tiny intracellular power packs that have their own dollop of DNA and are always inherited matrilineally - have conflicted (contrast this with this) but, in combination with broader studies of entire genomes, suggest that a bit of canoodling transpired between Ashkenazi men and local European women, in particular Italian women, early in that two-millenia European sojourn.

I can relate. My wife is 100 percent Italian by heritage, and my daughter by my first marriage is half-Italian.

Previously: Caribbean genetic diversity explored by Stanford/University of Miami researchers, Stanford study investigates our most-recent common ancestors and Stanford study identifies molecular mechanism that triggers Parkinson's
Photo by GidonPico

Popular posts

Category:
Biomedical research
Stanford immunologist pushes field to shift its research focus from mice to humans

Much of what we know about the immune system comes from experiments conducted on mice.  But lab mice are not little human beings. The two species are separated by both physiology and  lifestyles. Stanford immunologist Mark Davis is calling on his colleagues to shift their research focus to people.