Years ago, when patients showed up at the doctor with excessive thirst, frequent urination and unexplained weight loss - in other words, the classic symptoms of diabetes mellitus - diagnosing them was usually just a matter of checking for high blood sugar. Yes, they needed to be treated for the correct form of the disease, but the two main types were found in different populations. So, in most cases, no lab test was needed to figure out whether someone had Type 1 or Type 2 diabetes; demographic factors were enough to make the distinction.
Of late, there's been much more cross-over between the two groups. To treat patients correctly, it's important to diagnose the right form of diabetes, but there's a problem: The only test that does so is expensive, cumbersome and available only in hospitals.
So it's great news that Stanford scientists are developing a new Type 1 diabetes test, described in a paper published online this week in Nature Medicine. The new nanotechnology-based microchip, which researcher Brian Feldman, MD, PhD, holds in the photo above, tests patients' blood for the auto-antibodies that cause Type 1 diabetes. The new test is cheap, portable, and uses much less blood than the older diagnostic test. Unlike the old test, it requires no radioactive reagents and is simple enough to use in low-tech settings.
The test uses a nanotech enhancement (specifically, nano-sized islands of gold; hence the golden glow of the chip that Feldman is holding) to help detect auto-antibodies. In addition to diagnosing new patients, this technology will also enable better research into how Type 1 diabetes develops, as our press release explains:
...[P]eople who are at risk of developing Type 1 diabetes, such patients' close relatives, also may benefit from the test because it will allow doctors to quickly and cheaply track their auto-antibody levels before they show symptoms. Because it is so inexpensive, the test may also allow the first broad screening for diabetes auto-antibodies in the population at large.
"The auto-antibodies truly are a crystal ball," Feldman said. "Even if you don't have [Type 1] diabetes yet, if you have one auto-antibody linked to diabetes in your blood, you are at significant risk; with multiple auto-antibodies, it's more than 90 percent risk."
Feldman's team has started a biotech company to further develop the test and is seeking FDA approval for the new method. In addition, Stanford University and the researchers have filed a patent for the new technique.
Previously: A simple blood test may unearth the earliest signs of heart transplant rejection, Stanford microbiologist's secret sauce for disease detection and One family's story on caring for their children with type 1 diabetes
Photo by Norbert von der Groeben