Skip to content

In a human brain, knowing a face and naming it are separate worries

Alfred E. Neuman (small)Viewed from the outside, the brain's two hemispheres look like mirror images of one another. But they're not. For example, two bilateral brain structures called Wernicke's area and Broca's area are essential to language processing in the human brain - but only the ones  in the left hemisphere (at least in the great majority of right-handers' brains; with lefties it's a toss-up), although both sides of the brain house those structures.

Now it looks as though that right-left division of labor in our brains applies to face perception, too.

A couple of years ago I wrote and blogged about a startling study by Stanford neuroscientists Josef Parvizi, MD, PhD, and Kalanit Grill-Spector, PhD. The researchers recorded brain activity in epileptic patients who, because their seizures were unresponsive to drug therapy, had undergone a procedure in which a small section of the skulls was removed and plastic packets containing electrodes placed at the surface of the exposed brain. This was done so that, when seizures inevitably occurred, their exact point of origination could be identified. While  patients waited for this to happen, they gave the scientists consent to perform  an experiment.

In that experiment, selective electrical stimulation of another structure in the human brain, the fusiform gyrus, instantly caused a distortion in an experimental subjects' perception of Parvizi's face. So much so, in fact, that the subject exclaimed, "You just turned into somebody else. Your face metamorphosed!"

Like Wernicke's and Broca's area, the fusiform gyrus is found on each side of the brain. In animal species with brains fairly similar to our own, such as monkeys, stimulation of either the left or right fusiform gyrus appears to induce distorted face perception.

Yet, in a new study of ten such patients, conducted by Parvizi and colleagues and published in the Journal of Neuroscience,  face distortion occurred only when the right fusiform gyrus was stimulated. Other behavioral studies and clinical reports on patients suffering brain damage have shown a relative right-brain advantage in face recognition as well as a predominance of right-side brain lesions in patients with prosopagnosia, or face blindness.

Apparently, the left fusiform gyrus's job description has changed in the course of our species' evolution. Humans' acquisition of language over evolutionary time, the Stanford investigators note, required the redirection of some brain regions' roles toward speech processing. It seems one piece of that co-opted real estate was the left fusiform gyrus. The scientists suggest (and other studies hint) that along with the lateralization of language processing to the brain's left hemisphere, face-recognition sites in that hemisphere may have been reassigned to new, language-related functions that nonetheless carry a face-processing connection: for example, retrieving the name of a person whose face you're looking at, leaving the visual perception of that face to the right hemisphere.

My own right fusiform gyrus has been doing a bang-up job all my life and continues to do so. I wish I could say the same for my left side.

Previously: Metamorphosis: At the push of a button, a familiar face becomes a strange one, Mind-reading in real life: Study shows it can be done (but they'll have to catch you first), We've got your number: Exact spot in brain where numeral recognition takes place revealed and Why memory and  math don't mix: They require opposing states of the same brain circuitry
Photo by AlienGraffiti

Popular posts