Skip to content

Double kidney transplants leave Hawaii siblings raring to go

Two kids; two cases of a rare, often fatal disease; and now, thanks to the work of Lucile Packard Children's Hospital doctors, two growing kids.

Both Julia Faisca, nearly 10, and Dominic Faisca, 8, suffer from cystinosis, a genetic disease that causes an amino acid -- cystine -- to build up in the kidney, eye and other places in the body.

The condition retarded the siblings' growth, and damaged their kidneys. And by May 2013, Julia's kidneys needed to be replaced. Fortunately, just three months later, she had a new kidney. And the Faisca family received the good news that a kidney was waiting for Dominic while they were flying to California from their home in Hawaii for a routine checkup for Julia.

"We've been busy -- two kidney transplants in less than a year," the kids' mom, Natasha, said in a recent Inside Stanford Medicine story:

"Since their transplants, they aren't picky eaters anymore," Natasha said. "I joke with the doctors that the kids are eating me out of the house now. But it's well worth it."

Although they'll always be on medication to protect their new kidneys and will need to return for twice-yearly checkups at Stanford, there's finally a sparkle in their eyes, Natasha said.

"Dominic and Julia are growing like weeds and it's really fun to watch them turn into regular kids," said pediatric transplant specialist Paul Grimm, MD.

Both transplants were conducted by Waldo Concepcion, MD, a specialist in multi-organ transplantation.

Becky Bach is a science-writing intern with the Office of Communications and Public Affairs.

Previously: Baby born with rare, often-fatal kidney disease "doing well" at Packard Children's Hospital, Contact sports OK for kids with one kidney, new study says and "Delivering hope" at Packard Children's Hospital
Photo by Norbert von der Groeben

Popular posts

Category:
Biomedical research
How do the new COVID-19 vaccines work?

The Pfizer and Moderna COVID-19 vaccines are the first to use the RNA coding molecule to prompt our bodies to fight the virus. Here's how they work.