Skip to content

DNA architecture fascinates Stanford researcher – and dictates biological outcomes

It's time for the next edition of Biomed Bites, a weekly feature that highlights some of Stanford's most innovative research and introduces Scope readers to groundbreaking researchers in a variety of disciplines. 

It's a puzzle that would delight puzzle master Will Shortz: How do you pack 2 meters of DNA into a container (the nucleus) only .000005 meters wide? Precisely, and according to plan, it seems. Stanford biophysicist Will Greenleaf, PhD, studies the architecture of the genome, building on the knowledge that DNA's shape effects how a gene is expressed.

In the video above, Greenleaf, now an assistant professor of genetics, explains: "The genes have to be unpacked to be expressed. The mechanics of that are really fascinating."

Greenleaf is a physics guy, earning a PhD in applied physics at Stanford to build on his undergraduate Harvard physics degree. He has also studied computer science and chemistry, bringing all of this knowledge to bear on demystifying the structure of DNA, and its RNA offshoots. Greenleaf and his team also develop new instruments needed to measure, see and manipulate DNA structure.

This is important for many reasons, but most directly to treat chromatinopathies, or diseases caused by the improper folding or structure of DNA and its associated proteins.

Learn more about Stanford Medicine's Biomedical Innovation Initiative and about other faculty leaders who are driving forward biomedical innovation here.

Previously: Caught in the act! Fast, cheap, high-resolution, easy way to tell which genes a cell is using, "Housekeeping" protein complex mutated in about 1/5 of all human cancers, say Stanford researchers and Mob science: Video game, EteRNA, lets amateurs advance RNA research

Popular posts