Skip to content

Using a smartphone and the Folding@home app to advance disease research

protein

Smartphones now have the power that personal computers had a few years ago, and more and more people have them. So researchers are developing ways to harness that computing power to solve pressing biomedical problems.

As described in a Stanford News piece, Stanford's Vijay Pande, PhD, in partnership with Sony, recently developed a smartphone app that "folds" proteins while the phone's owner sleeps. "There are a ton of people with really powerful phones, and if we can use them efficiently, it sets the stage for something really great," said Pande, a Stanford chemistry professor.

This particular mobile app, called Folding@home, investigates the biology of diseases, including cancer, Alzheimer's, and Parkinson's disease. It's an extension of the Folding@home distributed computing project started in 2007, and it's now available on GooglePlay.

Disease biology is dependent on proteins, which are complex linear chains of molecules that become "folded up", like snarled balls of yarn. The chain needs to be absolutely correct; any mutation that shifts a few molecules out of place will cause the protein to not work optimally, not work at all, or, worse, work in a way that does damage to the organism.

Understanding protein configurations is key to developing cures for disease. While real proteins take milliseconds to curl up, simulating this process with computers takes thousands of hours. But if 10,000 people download and use the Folding@home app, and it runs 8 hours a day while the phone is not otherwise in use, the team's first research question could be solved in three months.

The app's first focus is a kinase protein found in breast cancer. It seems that different people's tumors respond differently to the several drugs available; currently, doctors use a guess-and-check method to choose a drug, but information derived from the proteins could enable doctors to choose correctly on the first try. In something as time-sensitive as cancer, this could save lives.

Next up for the app is a project related to Alzheimer's disease. Eventually, if enough people enroll, the researchers could launch several projects simultaneously, allowing people to choose to take part in one that is personally meaningful.

Image of a protein Argonne National Laboratory

Popular posts