Skip to content

Building bodies, one organ at a time

bioprinting muscle. jpg

If you’ve been to a geek or tech event like the annual Maker Faire that happens every spring here in the Bay Area, you’ve probably seen demonstrations of 3D printers that can spit out toys or jewelry.

What’s really interesting is how researchers and doctors are harnessing that technology to help their patients by making prosthetics for amputated arms, or replacements parts for damaged bones. A recent article in the San Jose Mercury News highlights this new frontier and features Stanford cardiologist Paul Wang, MD, who describes one of the biggest advantages of 3D printing:

"You can make things for tens of dollars rather than thousands of dollars," said Stanford University professor Dr. Paul Wang, a cardiovascular and bioengineering expert who is among those studying the printers' potential for prosthetics, replacement bones and other applications. "It's totally opened up what's possible."

Printing prosthetics or bone substitutes using inorganic materials is just the beginning of how scientists hope to use 3D printing; many are trying to use the technology to print living tissue and organs. Doing so is a challenging endeavor - for starters, even relatively simple organs need networks of blood vessels that can constantly feed its cells - but several research teams are betting they can solve the puzzle:

University of Pennsylvania researchers say they've designed a way to print those [blood vessel] networks and a Russian company, 3D Bioprinting Solutions, has vowed this year to 3D-print a transplantable thyroid gland, which is laced with blood vessels.

Still other researchers are 3D-printing insulin-producing pancreatic tissues to help manage diabetes, viruses that can attack cancer cells and organ models that surgeons can practice on or that can be used to help design medical devices.

Stanford's Wang, for example, has made a 3D-printed model of the heart along with a prototype of a tiny gadget he envisions one day could crawl though real hearts to gather information on the organ's health or kill cells that damage it.

The field has the potential to be a financial windfall for companies that can bring a viable medical product to market, but one of the biggest hurdles is the regulatory process, which can stretch out over a decade or more for new devices. Still, as detailed in the article, proponents are "encouraged by the impact 3D printing already is having on health care" and remain optimistic about the future.

Previously: Countdown to Medicine X: 3D printing takes shapeCreating organ models using 3D printing3D printer in China makes tiny ear and 3D printer uses living cells to produce a human kidney
Photo of researcher printing muscle tissue by U.S. Army Materiel Command

Popular posts

Category:
Biomedical research
Stanford immunologist pushes field to shift its research focus from mice to humans

Much of what we know about the immune system comes from experiments conducted on mice.  But lab mice are not little human beings. The two species are separated by both physiology and  lifestyles. Stanford immunologist Mark Davis is calling on his colleagues to shift their research focus to people.