Skip to content

Biodesign program welcomes last class from India

Clark CenterIn January, three fellows from India arrived to Stanford to join the Biodesign program, which immerses clinicians, scientists, engineers and business people in the biodesign process for innovating successful medical devices.

What makes these three unique is that they're the last class from the Stanford-India Biodesign program to visit home base, housed within the Clark Center and the interdisciplinary environment of Stanford Bio-X. The Indian program has been so successful that after this year they will become independent.

I’ll be following this final group of Indian fellows on their whirlwind tour of clinics, prototyping demos, brainstorming sessions, and courses on intellectual property and regulatory steps as they develop and prototype a medical device – and blogging about them along the way.

The three fellows I’ll be following – Debayan Saha, Shashi Ranjan, PhD, and Harsh Sheth, MD – all say they were drawn to the program in part because of its unique approach. Commonly, people develop medical devices and then look for a problem to apply it to. Or, they come up with a prototype that meets a real need, but don’t research the intellectual property or costs in advance and fail because of that oversight.

In the end, real needs are unmet.

In the Biodesign program, fellows first observe clinicians to learn what the needs are. Then they research the intellectual property, medical costs of the disease, and regulatory hurdles they would have to overcome before they ever start prototyping.

The end result has been 36 start-up companies and international programs in India, Singapore and Ireland all trying to replicate the process and meet their country’s own unique medical needs.

By June, Saha, Ranjan and Sheth will have developed a device prototype that solves a medical need in cardiovascular medicine, and that could potentially get to market. Sheth brings clinical expertise – he is a surgeon – while Ranjan and Saha both have engineering backgrounds.

So far, the group says their clinical visits have resulted in a list of more than 300 needs, which they say will grow before it shrinks down to the final one they decide to address. I’ll be documenting the process of whittling 300+ needs down to a single prototype, and interviewing leaders in Biodesign along the way.

For my next installment: The fellows visit a south Asian cardiovascular disease clinic run by Rajesh Dash, MD, PhD, and wonder if a device can change patient attitudes.

Previously: Biodesign fellows take on night terrors in children, Stanford Biodesign Program releases video series on the FDA system and A medical invention that brings tears to your eyes
Photo of the Clark Center by L.A. Cicero

Popular posts

Category:
Genetics
Sex biology redefined: Genes don’t indicate binary sexes

The scenario many of us learned in school is that two X chromosomes make someone female, and an X and a Y chromosome make someone male. These are simplistic ways of thinking about what is scientifically very complex.