Worldwide obesity rates have more than doubled since 1980, and today the majority of the global population live in areas where being overweight kills more people than being underweight, according to data from the World Health Organization. But new research that provides a comprehensive view of the metabolic signature that may correlate with obesity could help scientists develop more effective ways to manage and prevent obesity, and it offer insights into how variability in genes, environment, metabolism and lifestyle affect our health individually.
As reported today on the NIH Director's Blog:
The new analysis uncovered changes to 29 molecular metabolites, or biomarkers, that correlated with obesity in 1,880 people from the United States. Most of those biomarkers—25 to be exact—also turned up in the urine of obese people from the other side of the Atlantic, offering confirmation that the findings represent a shared metabolic signature of obesity.
Several of the biomarkers are byproducts of what a person eats, which may reflect differences in the diets of obese and non-obese people. For example, urine from obese people was more likely to contain a metabolite that comes from eating red meat, while thinner folks were more likely to have a metabolite indicative of citrus fruit consumption.
However, not all of the biomarkers were directly related to food. Some appeared to stem from widespread changes in kidney function, skeletal muscle, and metabolism that may occur as a person packs on extra pounds. And, intriguingly, nine of the biomarkers significantly associated with obesity weren’t even produced by the human body, but rather by the trillions of microbes that live inside our guts. Those microbial partners play important roles in the breakdown of essential vitamins, amino acids, and protein. In fact, recent research findings suggest that a significant portion of obesity risk may be explained by the activity of gut microbes. This discovery adds to mounting evidence, spurred in recent years by the NIH-funded Human Microbiome Project, for the intricate and essential role of microbes—collectively known as the microbiome—in many aspects of our health.
The piece goes on to say that the findings also "raise the intriguing possibility that people might one day be able to visit their health-care providers, receive a blood or urine test, and leave with precise, individualized information regarding their risk" for obesity and other health issues.
Previously: Childx speaker Matthew Gillman discusses obesity prevention, Discussing how obesity and addiction share common neurochemistry, Stanford team awarded NIH Human Microbiome Project grant and Obesity is a disease – so now what?
Photo by Matthew