Skip to content

Fly-snatching robot speeds biomedical research

The drosophila hangs unharmed lifted by the robot’s suction tube.

It looks like nothing so much as a miniature UFO hovering over a plate of unsuspecting flies. When it’s ready to strike, it flashes a brief infrared blast of light that reflects off the animals’ backs, indicating the location of each insect. Then, a tiny, narrow suction tube strikes an illuminated thorax, painlessly sucking onto the fly and carrying it away.

It’s not the greatest new gadget to rid your kitchen of unwelcome pests, it’s the latest biomedical research tool from applied physicist Mark Schnitzer, PhD.

The flies in question are commonly studied in biology labs as a proxy for our own harder-to-access cells and organs. As I wrote in a press release:

Although flies and humans have obvious differences, in many cases our cells and organs behave in similar ways and it is easier to study those processes in flies than in humans. The earliest information about how radiation causes gene mutations came from fruit flies, as did an understanding of our daily sleep/waking rhythms. And many of the molecules that are now famous for their roles in regulating how cells communicate were originally discovered by scientists hunched over microscope staring at the unmoving bodies of anesthetized flies.

Until now, scientists have had to anesthetize the flies and painstakingly assess them by microscope. The robot and its machine vision can assess physical features more quickly and in finer detail than lab personnel and can carry out behavioral studies of awake flies.

I spoke with Joan Savall, PhD, a visiting scientist from the Howard Hughes Medical Foundation, who led the development of the robot. He says it will speed research because the robot is both faster and less sleepy that your average graduate student, but what’s really cool is that it opens up entirely new areas of research.

“In the end you can really push many fields at the same time,” he told me.

Previously: Thoughts light up with new Stanford-designed tool for studying the brain and New tool for reading brain activity of mice could advance study of neurodegenerative diseases
Image by Linda Cicero

Popular posts