Published by
Stanford Medicine

Author

Autoimmune Disease, Behavioral Science, Immunology, Pediatrics, Research

What happens when the immune system attacks the brain? Stanford doctors investigate

What happens when the immune system attacks the brain? Stanford doctors investigate

SM PANS image - smallerThe first time he flew into a psychotic rage, Paul Michael Nelson was only 7 years old. He stabbed at a door in his family’s home with a knife, tore at blankets with his teeth, spoke in gibberish. His very worried parents, Paul and Mary Nelson, rushed him to their local emergency room, where the medical staff thought that perhaps the little boy had simply had a bad temper tantrum.

But his rages got worse. Over the weeks and months that followed the first March 2009 emergency room visit, as Paul Michael cycled in and out of psychiatric hospitals, his parents and doctors struggled to understand what was wrong. Finally, they came to a surprising conclusion: Paul Michael had an autoimmune disease. His immune system appeared to be attacking his brain.

As strange as the case seems, the Nelsons are far from alone. As I describe in a recent story for Stanford Medicine magazine, Paul Michael was the first of more than 70 children who have been evaluated at a new clinic at Lucile Packard Children’s Hospital Stanford for pediatric acute-onset neuropsychiatric syndrome, a disease (or, more likely, a group of diseases) that doctors are still working to define. The suddenness and severity of the syndrome are frightening. Healthy children abruptly begin to show psychiatric symptoms that can include severe obsessive-compulsive behavior; anorexia; intense separation anxiety at the thought of being away from a parent; deterioration in their school work, and many other problems. From my story:

“In some ways, it’s like having your kid suddenly become an Alzheimer’s patient, or like having your child revert back to being a toddler,” says Jennifer Frankovich, MD, clinical assistant professor of pediatric rheumatology at the School of Medicine and one of the clinic’s founders.

“We can’t say how many kids with psychiatric symptoms have an underlying immune or inflammatory component to their disorder, but given the burgeoning research indicating that inflammation drives mood disorders and other psychiatric problems, it’s likely to be a large subset of children and even adults diagnosed with psychiatric illnesses,” says Kiki Chang, MD, professor of psychiatry and behavioral sciences.

To shed light on the disease, Frankovich and Chang are working with scientists from around the world on defining the parameters of the illness and launching urgently-needed research. In a special issue of the Journal of Child and Adolescent Psychopharmacology that published online this month, the researchers lay out several aspects of the problem. The Stanford experts are co-authors of a scientific article describing how doctors should evaluate children with the disease, known by its acronym, PANS. Other researchers have written about disordered eating in PANS and given a detailed description of the disease phenotype.

Recognition and treatment of the disease are still an uphill battle, but the growth of research efforts is a hopeful step. As Frankovich says at the conclusion of the Stanford Medicine story, “We cannot give up on this. There are so many of these cases out there.”

Previously: Stanford Medicine magazine traverses the immune system and My descent into madness – a conversation with author Susannah Cahalan
Illustration by Jeffrey Decoster

Autism, Parenting, Pediatrics, Research, Stanford News

Parents can learn autism therapy in groups to improve kids’ verbal skills, Stanford study shows

Parents can learn autism therapy in groups to improve kids' verbal skills, Stanford study shows

HoldingHandsAutism is more than twice as common than it was 15 years ago. But the number of clinicians who treat the developmental disorder is growing more slowly than the number of new cases, prompting caregivers to look for novel ways to share their expertise as widely as possible.

One possible approach: Teach groups of parents an autism therapy they can deliver at home. A new study from Stanford and Lucile Packard Children’s Hospital Stanford, published today in the Journal of Child Psychology and Psychiatry, found that small groups of parents could learn to deliver a scientifically validated autism treatment to their own children in a short series of classes.

The therapy, called pivotal response training, which has been validated in several prior studies, was targeted to kids’ language skills. The therapy gives parents a structured method for nurturing children’s verbal skills during everyday interactions.

The approach of having parents give treatment is meant to complement, not replace, one-on-one therapy with autism professionals. But it can still be valuable to children and their families, as our press release explains:

“There are two benefits: The child can make progress, and the parents leave the treatment program better equipped to facilitate the child’s development over the course of their daily routines,” said study co-author Grace Gengoux, PhD, clinical assistant professor of psychiatry and behavioral sciences and a psychologist specializing in autism treatment at the hospital. “The ways that parents instinctually interact with children to guide language development may not work for a child with autism, which can frustrate parents. Other studies have shown that learning this treatment reduces parents’ stress and improves their happiness. Parents benefit from knowing how to help their children learn.”

… To use the treatment for building language skills, parents identify something the child wants and systematically reward the child for trying to talk about it. For instance, if the child reaches for a ball, the parent says, “Do you want the ball? Say ‘ball.’”

“The child might say ‘ba,’ and you reward him by giving him the ball,” [lead author Antonio] Hardan, MD, said. “Parents can create opportunities for this treatment to work at the dinner table, in the park, in the car, while they’re out for a walk.”

The researchers are now following up with studies that will give them more information about which children and families are most likely to benefit from this therapeutic approach.

Previously: Using Google Glass to help individuals with autism better understand social cues, Using theater’s sensory experience to help children with autism and “No, I’m not ready yet”: A sister’s translation for her brother with autism
Photo by Wilson X

Immunology, In the News, Parenting, Pediatrics

Ivy and Bean help encourage kids to get vaccinated

Ivy and Bean help encourage kids to get vaccinated

Ivy and Bean2Last week, I took my two little boys to get their shots, including the MMR vaccine that protects against measles, mumps and rubella. Although, as a mom, it’s easy for me to understand the value of vaccines, I’m not sure my preschooler was completely convinced that getting poked in the arm was a great idea.

That’s why I am thrilled to see “Ivy and Bean vs. The Measles,” a set of posters and other educational materials that Sophie Blackall, the illustrator of the popular series of children’s books, has produced in collaboration with the Measles and Rubella Initiative. Blackall’s illustrations show Bean, one of the book’s two heroines, devising a series of unconventional strategies for avoiding the measles: wear a biohazard suit for the rest of your life, get adopted by a polar bear, or (my personal favorite) cover yourself in a 6-inch protective layer of lard.

“Or,” says Ivy, “get vaccinated!”

My son would probably be most interested in Bean’s suggestion to “Move to the moon!” He loves all things outer space-related, and I love the idea of finding something at our doctor’s office that would spark his interest and help me explain to him why he needs that brief poke in the arm.

Bravo, Ivy and Bean!

Via Shots
Previously: Side effects of childhood vaccines are extremely rare, new study finds, Measles is disappearing from the Western hemisphere and Tips for parents on back-to-school vaccinations
Artwork by Sophie Blackall

Behavioral Science, Parenting, Pediatrics, Research, Stanford News

Families can help their teens recover from anorexia, new study shows

Families can help their teens recover from anorexia, new study shows

anorexia-appleUpdated 10-2-14: In a just-published 1:2:1 podcast, Lock discusses this work in depth.

***

9-24-14: A large new study comparing two treatments for anorexia nervosa offers a hopeful message to parents of teens affected by the eating disorder: Families can work with therapists to help their children recover.

The study, which appears today in JAMA Psychiatry and was led by Stanford’s Stewart Agras, MD, was the first large randomized clinical trial to compare two forms of family-based treatment for anorexia. The study included 167 anorexia patients, aged 12 to 18, at six medical centers in the United States and Canada.

In both treatments tested, a trained therapist met regularly with the patient and at least one other member of his or her family. One type of therapy focused on teaching parents how to get their child eating again at home, a method that Agras and Stanford eating disorder expert James Lock, MD, PhD, have researched extensively in the past. The other approach was broader, with the therapist and the family exploring problems in family dynamics and how to solve them. Patients and families in both treatment groups received 16 one-hour therapy sessions over a nine-month period, and patients’ recovery was assessed at the end of the therapy and again one year later.

Both therapies were equally effective in the long run, but the approach that focused on feeding was faster, and patients in that group were hospitalized fewer days during their treatment, which also made this method less expensive. The findings add to a growing list of scientific studies that are changing how physicians think about the families of patients with eating disorders, as our press release explains:

“For a long time, people blamed families for causing anorexia and thought they should be left out of treatment,” said Lock. “But this study suggests that, however you involve them, families can be useful, and that more focused family treatment works faster and more cost-effectively for most patients.” Lock directs the Comprehensive Eating Disorders Program at Lucile Packard Children’s Hospital Stanford.

The need for good treatments for anorexia in teens is bolstered by prior research demonstrating that the disease becomes more difficult to treat in adulthood, as Agras noted:

“The longer anorexia goes on, the more difficult it is to treat,” he said. “A great many people live chronically restricted lives because of this disease — they plan their days around undereating and overexercise — and quite a few die. The idea is to treat the disorder in adolescence to prevent more adults from becoming anorexic.”

Lock is the c0-author of the book Help Your Teenager Beat an Eating Disorder, which is designed to help parents conduct the feeding-based treatment examined in this study. Lock and Agras have both contributed to textbooks and manuals on eating disorder treatment for health care professionals.

Previously: Stanford study investigates how to prevent moms from passing on eating disorders, A growing consensus for revamping anorexia nervosa treatment and Possible predictors of longer-term recovery from eating disorders
Photo by Santiago Alvarez

CDC, In the News, Infectious Disease, Neuroscience, Pediatrics

Stanford experts offer more information about enterovirus-D68

Stanford experts offer more information about enterovirus-D68

Below is an updated version of an entry that was originally posted on Sept. 26.

SONY DSCLast week, the California Department of Public Health confirmed that the season’s first four cases of enterovirus-D68 respiratory illness had been found in the state, three in San Diego County and one in Ventura County, with more expected to surface. As of Sept. 29, this makes California one of 40 states across the nation to be affected by EV-D68.

Health officials in Colorado are now investigating a handful of cases of paralysis in children there; the paralysis began a few weeks after respiratory illness and appears to be connected to EV-D68. Since the same virus was tentatively linked to paralysis cases in California children earlier this year, California officials are monitoring the situation closely.

Below, Yvonne Maldonado, MD, service chief of pediatric infectious disease at Lucile Packard Children’s Hospital Stanford, answers additional questions about the respiratory symptoms caused by this virus. Keith Van Haren, MD, a pediatric neurologist who has been assisting closely with the California Department of Public Health’s investigation, also comments on neurologic symptoms that might be associated with the virus.

Enteroviruses are not unusual. Why is there so much focus from health officials on this one, EV-D68?

Maldonado: The good news is that this virus comes from a very common family of viruses that cause most fever-producing illnesses in childhood. But it’s been more severe than other enteroviruses. Some hospitals in other parts of the country have had hundreds of children coming to their emergency departments with really bad respiratory symptoms. The fact that it’s been so highly symptomatic and that there has been a large volume of cases is why it has gotten so much attention.

Van Haren: It’s important to remember that most children and adults who are exposed to enteroviruses don’t get sick at all. A smaller percentage come down with fever and/or respiratory symptoms, as Dr. Maldonado has described. And as far as we can tell, it’s only a very, very small number of children, if any, who get paralysis, typically affecting one arm or leg. The Centers for Disease Control and the California Department of Public Health are still investigating to try to determine conclusively whether EV-D68 is causing neurologic symptoms, such as paralysis.

What do we know about the course of possible neurologic symptoms of EV-D68 and their potential treatments?

Van Haren: We’re still learning about the possible neurologic symptoms and how we might treat them. To start, we have a growing suspicion that EV-D68 may be associated with paralysis. In the patients we’ve seen with paralysis, progression of weakness appears to stop on its own, and recovery of strength is very slow and usually incomplete.

Which groups are most at risk?

Maldonado: Children with a history of asthma have been reported to have especially bad respiratory symptoms with this virus. It can affect kids of all ages, from infants to teens. So far, only one case has been reported in an adult, which makes sense because adults are more likely to have immunity to enteroviruses. We do worry more about young infants than older children, just because they probably haven’t seen the virus before and can get worse respiratory symptoms with these viral infections.

Van Haren: We don’t yet know who is most at risk for paralysis or other neurologic symptoms, but we are studying this carefully to find out why some children get sick and some do not. So far, it seems that the children who have been affected by paralysis were generally healthy prior to their illness.

What is the treatment for EV-D68?

Maldonado: There is no treatment that is specific to the virus. At home, parents can manage children’s fevers with over-the-counter medications, make sure they drink lots of fluids to avoid dehydration, and help them get plenty of rest. For children who are very ill, doctors will check for secondary illnesses such as bacterial pneumonia, which would be treated with antibiotics, and may hospitalize children who need oxygen or IV hydration to help them recover.

Continue Reading »

Health and Fitness, Nutrition, Pediatrics, Public Health

Pediatrics group issues new recommendations for building strong bones in kids

Pediatrics group issues new recommendations for building strong bones in kids

MilkshelfOur bones function as retirement-savings accounts for calcium: We deposit the mineral into our bones when we’re young, then draw on the stores as we age. Too little calcium in the “savings account” puts people at risk for osteoporosis and debilitating bone fractures later in life.

This means that, although osteoporosis is usually seen as a disease of old age, pediatricians and parents need to pay attention to bone health. This week, the American Academy of Pediatrics released updated guidelines for pediatricians on how nutrition and exercise can improve bone density in their patients. The guidelines were co-authored by Stanford’s Neville Golden, MD, who is also an adolescent medicine specialist at Lucile Packard Children’s Hospital Stanford. The report discusses calcium, which strengthens bones; vitamin D, which helps the body absorb calcium; and weight-bearing exercise, which promotes calcium deposition into the bones.

In addition to protecting against fractures in old age, the guidelines address the needs of kids whose bones are weakened by a variety of childhood and adolescent medical conditions, including juvenile osteoporosis, cystic fibrosis, lupus, celiac disease, cerebral palsy and anorexia nervosa.

A few highlights from the recommendations:

  • Children and adolescents should get their calcium mostly from food, not supplements. To meet calcium requirements, the committee recommends three or four daily servings of dairy foods (depending on the child’s age) and also suggests alternative food sources such as dark green veggies, beans, and calcium-fortified orange juice or breakfast cereals.
  • Vitamin D recommendations went up in 2011; the AAP agrees with the increased recommendations for all children and notes that kids using certain medications have even higher requirements than healthy children. Although the body can make vitamin D from sunlight, the report notes that kids are spending more time indoors and that sunscreen prevents vitamin D synthesis, making children more reliant on food and supplements to get enough vitamin D.
  • Soda often displaces milk in children’s diets, adding bone health to the list of reasons doctors should discourage soda consumption.
  • Weight-bearing exercise helps strengthen the bones. The report recommends activities such as walking, jogging, jumping and dancing over exercises such as swimming and cycling for building bone health.
  • Adolescent girls with eating disorders such as anorexia nervosa and the female athlete triad experience bone loss. In the past, some physicians have suggested that these young women could improve their bone density by taking oral contraceptives, but the report notes that randomized controlled trials have not found any evidence that oral contraceptives increase bone mass for these patients.

Previously: Goo inside bones provides structural support, study finds, New genetic regions associated with osteoporosis and bone fracture and Avoiding sun exposure may lead to vitamin D deficiency in Caucasians
Photo by Stephanie Booth

CDC, In the News, Infectious Disease, Pediatrics, Public Health

Q&A about enterovirus-D68 with Stanford/Packard infectious disease expert

Q&A about enterovirus-D68 with Stanford/Packard infectious disease expert

SONY DSCToday’s New York Times features a story on the accelerating spread of enterovirus-D68, a virus that is causing severe respiratory illness in children across the country. As the Times reports, some emergency departments in the Midwest have been so swamped with cases that they’ve had to divert ambulances to other hospitals. Although California is still only lightly affected, the state’s first four cases were confirmed by the California Department of Public Health late last week, with more expected to surface.

To help parents who may be wondering how to prevent, spot and care for EV-D68 infection, Yvonne Maldonado, MD, service chief of pediatric infectious disease at Lucile Packard Children’s Hospital Stanford, answered some common questions about the virus:

Enteroviruses are not unusual. Why is there so much focus from health officials on this one, EV-D68?

The good news is that this virus comes from a very common family of viruses that cause most fever-producing illnesses in childhood. But it’s been more severe than other enteroviruses. Some hospitals in other parts of the country have had hundreds of children coming to their emergency departments with really bad respiratory symptoms. The fact that it’s been so highly symptomatic and that there has been a large volume of cases is why it has gotten so much attention.

Have any patients at Lucile Packard Children’s Hospital Stanford been affected with EV-D68?

As of today (Sept. 26), we have not yet had a documented case at our hospital. However, there have been a total of 226 confirmed cases in 38 states across the country. Some children who have this virus are probably not being tested, so the real number of cases nationwide is likely to be higher.

If your child has respiratory symptoms and you suspect EV-D68, what should you do?

The virus causes symptoms such as coughing, sneezing and runny nose. In some cases but not all, kids also have a fever. If your child has respiratory symptoms with or without a fever, especially if he or she also has a history of asthma, monitor your child at home. If you feel that he or she has been sick for a long period, is getting worse or is experiencing worsening of asthma or difficulty breathing, go see your pediatrician.

Which groups are most at risk?

Children with a history of asthma have been reported to have especially bad respiratory symptoms with this virus. It can affect kids of all ages, from infants to teens. So far, only one case has been reported in an adult, which makes sense because adults are more likely to have immunity to enteroviruses. We do worry more about young infants than older children, just because they probably haven’t seen the virus before and can get sicker with these viral infections.

How can the illness be prevented?

This virus is spread by contact with secretions such as saliva. If your children are sick, they should stay home from school to avoid spreading the illness to others. To avoid getting sick, stay at least three feet from people with symptoms such as coughing and runny nose, wash your hands frequently, and make sure your kids wash their hands often, too.

What is the treatment for EV-D68?

There is no treatment that is specific to the virus. At home, parents can manage children’s fevers with over-the-counter medications, make sure they drink lots of fluids to avoid dehydration, and help them get plenty of rest. For children who are very ill, doctors will check for secondary illnesses such as bacterial pneumonia, which would be treated with antibiotics, and may hospitalize children who need oxygen or IV hydration to help them recover.

Previously: Tips from a child on managing asthma
Photo by Michelle Brandt

Immunology, Infectious Disease, Pregnancy, Research, Women's Health

Study: Pregnancy causes surprising changes in how the immune system responds to the flu

Study: Pregnancy causes surprising changes in how the immune system responds to the flu

pregnant ladyWhen pregnant women get influenza, they tend to get really sick. Flu complications such as pneumonia are more common in pregnant women than other healthy young adults, and their risk of death from flu is higher, too.

Until now, doctors have ascribed the problem to the fact that the immune system is tamped down by pregnancy, a protective mechanism that keeps the woman’s body from rejecting her fetus. But a new Stanford study, the first ever to directly examine how a pregnant woman’s immune cells respond to flu viruses, found something unexpected: Instead of responding sluggishly, immune cells from pregnant women actually over-react to the flu. From our press release about the paper, which appears today in the Proceedings of the National Academy of Sciences:

“We were surprised by the overall finding,” said Catherine Blish, MD, PhD, assistant professor of infectious diseases and the study’s senior author. “We now understand that severe influenza in pregnancy is a hyperinflammatory disease rather than a state of immunodeficiency. This means that treatment of flu in pregnancy might have more to do with modulating the immune response than worrying about viral replication.”

In the lab, Blish’s team incubated immune cells obtained from pregnant and nonpregnant women’s blood samples with different strains of flu virus, including the H1N1 flu that caused the 2009 pandemic and also a less virulent strain of seasonal influenza. The responses they observed could help explain why flu, especially pandemic H1N1 flu, causes pneumonia in many pregnant patients:

Pregnancy enhanced the immune response to H1N1 of two types of white blood cells: natural killer and T cells. Compared with the same cells from nonpregnant women, H1N1 caused pregnant women’s NK and T cells to produce more cytokines and chemokines, molecules that help attract other immune cells to the site of an infection.

“If the chemokine levels are too high, that can bring in too many immune cells,” Blish said. “That’s a bad thing in a lung where you need air space.”

Why would influenza break the rules of how the immune system works in pregnancy? Blish thinks there’s a clue in the fact that the flu produces a fourfold increase in an expectant woman’s risk of delivering her baby prematurely. “I wonder if this is an inflammatory pathway that is normally activated later in pregnancy to prepare the body for birth, but that flu happens to overlap with the pathway and aberrantly activates it too early,” she said.

The research is a good reminder that flu season is just around the corner, and it’s time to start thinking about getting a flu shot, especially if you are pregnant or planning a pregnancy.

Previously: Text message reminders shown effective in boosting flu shot rates in pregnant women, Ask Stanford Med: Answers to your questions about seasonal influenza and Flu shots for moms may help prevent babies from being born too small
Photo by Meagan

Applied Biotechnology, Cancer, Genetics, Pediatrics, Research

Gene-sequencing rare tumors – and what it means for cancer research and treatment

Gene-sequencing rare tumors - and what it means for cancer research and treatment

Sequencing the genes of cancer patients’ tumors has the potential to surmount frustrating problems for those who work with rare cancers. Doctors who see patients with rare tumors are often unsure of which treatments will work. And, with few patients available, researchers are unable to assemble enough subjects to compare different therapies in gold-standard randomized clinical trials. But thanks to gene sequencing, that is about to change.

Though this specific research was not intended to shape the child’s treatment, similar sequencing could soon help doctors decide how to treat rare cancers in real time

That’s the take-away from a fascinating conversation about the implications of personalized tumor-gene sequencing that I had recently with two Stanford cancer experts. Cancer researcher Julien Sage, PhD, is the senior author of a recent scientific paper describing sequencing of a pediatric tumor that affects only one in every 5 million people. Alejandro Sweet-Cordero, MD, an oncologist who treats children with cancer at Lucile Packard Children’s Hospital Stanford, is leading one of Stanford’s several efforts to develop an efficient system for sequencing individual patients’ tumors.

In their paper, Sage’s team (led by medical student Lei Xu) analyzed the DNA and RNA of one child’s unusual liver tumor, a fibrolamellar hepatocellular carcinoma. The cause of this form of cancer has never been found. Curious about what genes drove the tumor’s proliferation, the scientists identified two genes that were likely culprits, both of which promoted cancer in petri dishes of cultured cells. One of the genes, encoding the enzyme protein kinase A, is a possible target for future cancer therapies.

Though this specific research was not intended to shape the child’s treatment, similar sequencing could soon help doctors decide how to treat rare cancers in real time. Sweet-Cordero is working to develop an efficient system for getting both the mechanics of sequencing and the labor-intensive analysis of the resulting genetic data completed in a few weeks, instead of the two to three months now required. “We’re trying to use this kind of technology  to really help patients,” Sage said. “If you’re dealing with a disease that may kill the patient very fast, you want to act on it as soon as possible.”

In addition to giving doctors clues about which chemotherapy drugs to try, gene sequencing gives them a new way to study tumors.

“What’s really important is that, instead of categorizing tumors based on how they look under a microscope, we’ll be able to categorize them based on their gene-mutation profile,” Sweet-Cordero said. Rather than setting up clinical trials based on a tumor’s histology, as doctors have done in the past, scientists will group patients for treatment trials on the basis of similar mutations in their tumors. “In my mind, as a clinical oncologist, this is the most transformative aspect of this technology,” he said. This is especially true for patients with rare tumors who might not otherwise benefit from clinical trials at all.

And for childhood cancers, knowing a tumor’s gene mutations could also help doctors avoid giving higher doses of toxic chemotherapy drugs than are truly needed.

“The way we’ve been successful in pediatric oncology is by being extremely aggressive,” Sweet-Cordero said. Oncologists take advantage of children’s natural resilience by giving extremely strong chemotherapy regimens, which beat back cancer but can also have damaging long-term side effects. “We end up over-treating significant groups of patients who could survive with less aggressive therapy,” Sweet-Cordero said. “If we can use genetic information to back off on really toxic therapies, we’ll have fewer pediatric cancer survivors with significant impairments.”

Meanwhile, Stanford cancer researchers are also tackling a related problem: the fact that not all malignant cells within a tumor may have the same genetic mutations, and they may not all be vulnerable to the same cancer drugs. Next month, the Stanford Cancer Institute is sponsoring a scientific symposium on the concept, known as tumor heterogeneity, and how it will affect the future of personalized cancer treatments.

Sage’s research was supported by the Lucile Packard Foundation for Children’s Health, Stanford NIH-NCATS-CTSA UL1 TR001085 and Child Health Research Institute of Stanford University. Sage and Sweet-Cordero are both members of the Stanford Cancer Institute, and the National Cancer Institute-designated Cancer Center.

Previously: Smoking gun or hit-and-run? How oncogenes make good cells go bad, Stanford researchers identify genes that cause disfiguring jaw tumor and Blood will tell: In Stanford study, tiny bits of circulating tumor DNA betray hidden cancers

Neuroscience, Pediatrics, Research, Stanford News

Kids’ brains reorganize as they learn new things, study shows

Kids' brains reorganize as they learn new things, study shows

arithmeticWhy do some children pick up on arithmetic much more easily than others? New Stanford findings from the first longitudinal brain-scanning study of kids solving math problems are shedding light on this question. The work gives interesting insight into how a child’s brain builds itself while also absorbing, storing and using new information. It turns out that the hippocampus, already known as a memory center, plays a key role in this construction project.

Published this week in Nature Neuroscience, the research focuses on what’s happening in the brain as children shift from counting on their fingers to the more efficient strategy of pulling math facts directly from memory. To conduct the study, the research team collected two sets of magnetic resonance imaging scans, about a year apart, on a group of grade-schoolers. From our press release:

“We wanted to understand how children acquire new knowledge, and determine why some children learn to retrieve facts from memory better than others,” said Vinod Menon, PhD, the Rachel L. and Walter F. Nichols, MD, professor of psychiatry and behavioral sciences at Stanford and the senior author of the study. “This work provides insight into the dynamic changes that occur over the course of cognitive development in each child.”

The study also adds to prior research into the differences between how children’s and adults’ brains solve math problems. Children use certain brain regions, including the hippocampus and the prefrontal cortex, very differently from adults when the two groups are solving the same types of math problems, the study showed.

“It was surprising to us that the hippocampal and prefrontal contributions to memory-based problem-solving during childhood don’t look anything like what we would have expected for the adult brain,” said postdoctoral scholar Shaozheng Qin, PhD, who is the paper’s lead author.

The study found that as children aged from an average of 8.2 to 9.4 years, they counted less and pulled facts from memory more when solving math problems. Over the same period, the hippocampus became more active and forged new connections with other parts of the brain, particularly several regions of the neocortex. But comparison groups of adolescents and adults were found on brain scans not to be making much use of the hippocampus when solving math problems. In other words, Menon told me, “The hippocampus is providing a scaffold for learning and consolidating facts into long-term memory in children.” And the stronger the scaffold of connections in an individual child, the more readily he or she pulled math facts from memory.

Now that the scientists have a baseline understanding of how this brain-building process normally works, they hope to run similar brain-scanning tests on children with math learning disabilities, with the aim of understanding what goes awry in the brains of children who really struggle with math.

Previously: Unusual brain organization found in autistic kids who best peers at math, Peering into the brain to predict kids’ responses to math tutoring and New research tracks “math anxiety” in the brain
Photo by Yannis

From August 11-25, Scope will be on a limited publishing schedule. During that time, you may also notice a delay in comment moderation. We’ll return to our regular schedule on August 25.

Stanford Medicine Resources: