Published by
Stanford Medicine

Category

Neuroscience

Neuroscience, Research, Technology, Videos

Using Google Glass to improve quality of life for Parkinson’s patients

Using Google Glass to improve quality of life for Parkinson's patients

Researchers at Newcastle University are exploring ways that Google Glass could improve Parkinson’s patients’ quality of life by assisting them in placing phone calls, reminding them to take their medications or giving them behavioral prompts, such as speaking louder. In the video above, Roisin McNaney, a PhD student in the university’s Digital Interaction Group, explains how using Glass could ease patients’ anxiety about encountering a symptom-related problem while in public, raise patients’ confidence and, ultimately, make them more independent.

Previously: Abraham Verghese uses Google Glass to demonstrate how to begin a patient exam, Revealed: The likely role of Parkinson’s protein in the healthy brain and Stanford study identifies molecular mechanism that triggers Parkinson’s
Via Medgadget

In the News, Neuroscience, Technology

Facial expression recognition software could predict student engagement in learning

Facial expression recognition software could predict student engagement in learning

bored faceTest day approaching? Get your game face on. A study of a computer program that recognizes and interprets facial expressions has found that identifying students’ level of engagement while learning may predict their performance in the class. Computer scientists at the University of California, San Diego and Emotient, a San Diego-based company that developed the facial-recognition software used in the study, teamed with psychologists at Virginia Commonwealth and Virginia State universities to look at “when and why students get disengaged,” study lead author Jacob Whitehill, PhD, researcher in UC San Diego’s Qualcomm Institute and Emotient co-founder, said in a release.

The authors write in the study, which was published in an early online version in the journal IEEE Transactions on Affective Computing:

In this paper we explore approaches for automatic recognition of engagement from students’ facial expressions. We studied whether human observers can reliably judge engagement from the face; analyzed the signals observers use to make these judgments; and automated the process using machine learning.

“Automatic engagement detection provides an opportunity for educators to adjust their curriculum for higher impact, either in real time or in subsequent lessons,” Whitehill said in the release. ”Automatic engagement detection could be a valuable asset for developing adaptive educational games, improving intelligent tutoring systems and tailoring massive open online courses, or MOOCs.”

Previously: Looks of fear and disgust help us to see threats, study showsProviding medical, educational and technological tools in Zimbabwe and Whiz Kids: Teaching anatomy with augmented reality
Photo by Jesús Gorriti

Aging, Genetics, Men's Health, Neuroscience, Research, Stanford News, Women's Health

Having a copy of ApoE4 gene variant doubles Alzheimer’s risk for women but not for men

Having a copy of ApoE4 gene variant doubles Alzheimer's risk for women but not for men

brain cactus - smallSince the early 1990s, when Duke University neurologist Allen Roses, MD, first broke the news, it’s been known that a person carrying the gene variant known as ApoE4 is at elevated risk of getting Alzheimer’s disease. To this day ApoE4 is the strongest known single genetic risk factor for Alzheimer’s, a progressive neurological syndrome that robs its victims of their memory and reasoning ability.

But only now is it looking certain that the increased Alzheimer’s risk ApoE4 confers is largely restricted to women. Men’s fates don’t seem to be altered nearly as much by the genetic bad penny that is ApoE4, according to a new Annals of Neurology study led by Mike Greicius, MD, medical director of the Stanford Center for Memory Disorders.

Accessing two huge publicly available national databases, Greicius and his colleagues were able to amass medical records for some 8,000 people and show that initially healthy ApoE4-positive women were twice as likely to contract Alzheimer’s as their ApoE4-negative counterparts, while ApoE4-positive men’s risk for the syndrome was barely higher than that for ApoE-negative men.

What the heck is ApoE4 for, anyway? In my release on the new study, I wrote:

The ApoE gene is a recipe for a protein important for shuttling fatty substances throughout the body. This is particularly important in the central nervous system, as brain function depends on rapid rearrangement of such fatty substances along and among nerve cell membranes. The ApoE gene comes in three varieties — ApoE2, ApoE3 and ApoE4 — depending on inherited variations in the gene’s sequence. As result, the protein that the gene specifies also comes in three versions, whose structures and fatty-substance-shuttling performance differ. Most people carry two copies of the ApoE3 gene variant (one from each parent). But about one in five people carries at least one copy of ApoE4, and a small percentage have two ApoE4 copies. Numerous studies … have confirmed that ApoE4 is a key risk factor for Alzheimer’s disease, with a single copy of ApoE4 increasing that risk twofold or fourfold. Carrying two copies confers 10 times the risk of Alzheimer’s.

Early hints in the medical literature that the ApoE4 variant exerted differential effects on women’s versus men’s brains were largely ignored until now, says Greicius. He says that’s because most of the seminal ApoE4/Alzheimer’s genetics research was conducted as case-control studies: The ApoE4 gene version’s frequency in people with Alzheimer’s was compared to its frequency in people without the disease. (About half of those with Alzheimer’s, but only about 15 percent without it, are positive for ApoE4.)

But that method has limitations, says Greicius: “About 10-15 percent of ‘normal’ 70-year-olds will develop Alzheimer’s if you wait five or ten years.” Their lurking in the “normal” group dilutes the results. Moreover, Greicius says,“these kinds of genetic studies are looking for needles in a haystack, so they require large numbers of subjects – thousands – to achieve statistical significance. If you want to further examine male/female differences, you have to double the sample size.” That’s costly.

And that’s how come the large government- and industry-supported repositories to which Greicius and his team resorted are such a great idea.

Previously: Estradiol – but not Premarin – prevents neurodegeneration in women at heightened dementia risk, Common genetic Alzheimer’s risk factor disrupts healthy older women’s brain function, but not men’s, Hormone therapy halts accelerated biological aging seen in women with Alzheimer’s genetic risk factor and A one-minute mind-reading machine? Brain-scan results distinguish mental states
Photo by Sean Michael Ragan

Humor, Neuroscience, Research, Stanford News

Looking at how a child’s sense of humor takes its shape

Looking at how a child's sense of humor takes its shape

girl2Where does a child’s sense of humor come from? That depends on how you define humor and where you look to find it. A recent blog post from the Cognitive Neuroscience Society reports:

Humor can be a very complex and hard concept for some kids to grasp, said [Jessica Black, PhD,] of the Graduate School of Social Work Boston College, speaking yesterday about her poster on this new work at the CNS meeting in Boston. It requires people to both detect and resolve incongruities and to find amusement – involving many regions of the brain, including those that process cognitive computations and those that process emotions.

Black and others, including Allan Reiss, MD, the study’s director, and Pascal Vrticka, PhD, both of Stanford, studied how different brain regions were activated as children watched a video with funny, positive or neutral content. Twenty-two children ages 6 to 13 were asked to rate their ability to create and appreciate humor. Then, researchers examined their brain activity using fMRI scans.

The CNS blog post continues:

In general, the researchers found greater brain activity in children who rated themselves low on the sense of humor scale. The systems related to detecting incongruities and those involved in language and working memory had to ramp up to process the funny videos, as did the arousal network that is usually more active when processing negative emotional information. Interestingly, the brain activity related to social processing was lower in these children, suggesting perhaps more difficulty in being able to think about the mental state of others.

Their results suggest that children with a low sense of humor may require more cognitive effort to process humor, Black said. The data also imply that children with a low sense of humor may experience stress and increased levels of arousal during social interactions involving humor.

Previously: A closer look at the way our brains process humorHumor as a mate selection strategy for women? and Making kids laugh for science: Study shows how humor activates children’s brains
Photo by Maria del Carmen Gomez

Autism, Genetics, Neuroscience, Research, Videos

Building a blueprint of the developing human brain

Building a blueprint of the developing human brain

In an effort to identify and better understand how genes turned on or off before birth influence early brain development, scientists at the Allen Institute for Brain Science have created a comprehensive three-dimensional map that illustrates the activity of some 20,000 genes in 300 brain regions during mid-prenatal development.

A post on the NIH Director’s blog discusses the significance of the project, known as the BrainSpan Atlas of the Developing Human Brain:

While this is just the first installment of what will be an atlas of gene activity covering the entire course of human brain development, this rich trove of data is already transforming the way we think about neurodevelopmental disorders.

To test the powers of the new atlas, researchers decided to use the database to explore the activity of 319 genes, previously linked to autism, during the mid-prenatal period. They discovered that many of these genes were switched on in the developing neocortex—a part of the brain that is responsible for complex behaviors and that is known to be disrupted in children with autism. Specifically, these genes were activated in newly formed excitatory neurons, which are nerve cells that send information from one part of the brain to another. The finding provides more evidence that the first seeds for autism are planted at the time when the cortex is in the midst of forming its six-layered architecture and circuitry.

In the above video, Ed Lein, PhD, an Allen Institute investigator, talks about the atlas and explains how it will allow researchers to examine genes that have been associated with a range of neurodevelopmental disorders and pinpoint when and where that gene is being used.

Previously: NIH announces focus of funding for BRAIN initiative, Brain’s gain: Stanford neuroscientist discusses two major new initiatives and Co-leader of Obama’s BRAIN Initiative to direct Stanford’s interdisciplinary neuroscience institute

Neuroscience, Patient Care, Stanford News, Videos

Treating intractible epilepsy

Treating intractible epilepsy

In this new Stanford Medicine video, patient Laura Koellstad tells the story of how her life changed with her first seizure and a diagnosis of intractible epilepsy, and then turned around following treatment at Stanford. Josef Parvizi, MD, PhD, associate professor of neurology and neurological sciences, and Robert Fisher, MD, PhD, director of the Stanford Comprehensive Epilepsy Program, explain the functional mapping and surgical procedures used to treat Koellstad’s condition, allowing her to return to work and regain her ability to drive.

Previously: The brain whisperer: Stanford neurologist talks about his work, shares tips with aspiring doctorsHow epilepsy patients are teaching Stanford scientists more about the brain and Implanting electrodes to treat epilepsy, better understand the brain

Events, Medical Education, Medicine and Society, Neuroscience, Stanford News

The brain whisperer: Stanford neurologist talks about his work, shares tips with aspiring doctors

The brain whisperer: Stanford neurologist talks about his work, shares tips with aspiring doctors

Parvizi at MS 101 - smallJosef Parvizi, MD, PhD, knows firsthand how art can influence medicine. While at a concert featuring music created by digitizing space sounds, he was inspired: “Why can’t we make music by digitzing brain waves?”

Parvizi, a neurologist who specializes in epilepsy, told local high-school students attending Stanford’s Med School 101 recently that the beauty of being a physician-researcher at Stanford is that you’re “surrounded by brilliant people in all areas.” So he took his literal brainstorm to Chris Chafe, PhD, in Stanford’s music department, and the result is a newly patented “brain stethoscope” that can translate brainwaves into music. Parvizi demonstrated the difference between normal brainwave music and the music produced by a brain experiencing a seizure in this YouTube video about the research.

In addition to the brain stethoscope, Parvizi has developed a procedure utilizing electrodes to detect the exact area of the brain that is causing the seizure, and then working with brain surgeons to operate on the affected area. At last week’s event he told the story of a patient who for 20 years had seizures that caused her leg to flail out to the side, greatly limiting her ability to do the things we take for granted every day, like driving or taking a shower. Showing a picture of the happy patient in her car holding up her driver’s license, Parvizi said, “This patient has been seizure-free for six years, driving and enjoying life like never before.”

Parvizi described being a physician-researcher this way: “Like riding two horses standing up with one foot on each horse, you have to keep your balance and it takes some skill.” But, he says, being a physician-researcher allows you to help thousands of patients with your research, and one patient at a time with the application of that research.

He advised the students to “do work you are excited about,” and in looking for a mentor, “be persistent, not pushy.” Parvizi told the story of how as a medical student he contacted the pioneering cognitive neuroscientist Antonio Damasio, MD, PhD, after reading his ground-breaking book, Descartes’ Error. “This was before the Internet, so I wrote to him and sent him faxes. I finally called him and told him I would be coming to the States and would like to meet with him. He told me he would give me 15 minutes. I told him, ‘I am coming all the way from Norway,’ and he said, ‘I will give you 15 minutes.’” That meeting set the course for Parvizi’s career, a career he clearly relishes.

“It took me 22 years of school and training, and that sounds like a lot, but it went by fast because everything is so interesting and exciting,” Parvizi told the group. Snapping his fingers and smiling, he said, “It went by just like that.”

Jacqueline Genovese is assistant director of the Arts, Humanities, and Medicine Program within the Stanford Center for Biomedical Ethics. Parvizi and Chafe will be demonstrating their brain stethoscope on April 29 from 5:30-7 PM at the Center for Computer Research in Music and Acoustics, as part of  the program’s Recombinations series.

Previously: At Med School 101, teens learn that it’s “so cool to be a doctor”, How epilepsy patients are teaching Stanford scientists more about the brainImplanting electrodes to treat epilepsy, better understand the brain and Ask Stanford Med: Neurologist answers your questions on drug-resistant epilepsy
Photo by Norbert von der Groeben

Immunology, Neuroscience, Research, Stanford News

Double vision: How the brain creates a single view of the world

Double vision: How the brain creates a single view of the world

eyes close-upAbout a decade ago, Stanford Bio-X director Carla Shatz, PhD, found that some proteins from the immune system seemed to be playing a role in the brain. Not all scientists were on board with the protein’s double life. Then Ben Barres, MD, PhD, a neurobiologist at Stanford, started finding the same thing with a different set of proteins – these immune system denizens appeared to be functioning in the brain (here’s a write-up on that work by my colleague Bruce Goldman). And still, not all immunologists accepted that the brain might also be using these proteins.

Now Shatz has published a paper online March 30 in Nature that should put the disagreement to rest. She very carefully showed that a protein originally known for its role in the immune system, called MHC Class I D, or D for short, was present in the nerves of the developing brain. She told me, ”The nervous system has just as much right to these immune proteins as the immune system.”

The role D plays is in helping the brain trim back connections as it develops. I didn’t know this before working on my story, but the brain starts out with about double the number of nerve connections than it will eventually use. The ones the brain doesn’t use get trimmed back. Shatz studies this process in a part of the brain that tries to create a single view of the world out of signals coming from the two eyes. In my press release I wrote:

Shatz said the rule of which connections the brain cuts back to create that single vision follows a simple mantra: “Fire together, wire together. Out of sync, lose your link.” Or rather, if early in life the left sides of both eyes see the same duck motif wallpaper, those neurons fire together and stay linked up. When the top of one eye and bottom of the other eye form a connection, the nerves fire out of sync, and the connection weakens and is eventually pruned back. Over time, the only connections that remain are between parts of the two eyes that are seeing the same thing.

I spoke with Lawrence Steinman, MD, PhD, a neurologist at Stanford who studies multiple sclerosis, a disease of both the immune system and the nervous system. He has a foot in both worlds and has followed Shatz’ work from the beginning. He says part of the problem in gaining acceptance for Shatz’ findings was in a name. A rose by any name may smell as sweet, but a protein with a name like “major histocompatibility complex I” only sounds to a biologist like an immune protein. He says he teaches students that if Shatz had published her work first the protein would have an entirely different name and it would be the immunologists fighting to claim the protein’s role in their world.

“They clearly have major roles in both the nervous system and the immune system,” he said.

Previously: Protein known for initiating immune response may set our brains up for neurodegenerative disorders and Pioneers in science
Photo by Ali Moradmand

In the News, Neuroscience, otolaryngology

Say that again? Tone deafness is inherited, study finds

Say that again? Tone deafness is inherited, study finds

singing2Can’t carry a tune? Don’t spend all your money on music lessons: Turns out tone deafness is an inherited non-talent.

Leonard Bernstein (no, not that one) writes in The Checkup:

Finnish researchers say they have found genes responsible for auditory response and neuro-cognitive processing that partially explain musical aptitude. They note “several genes mostly related to the auditory pathway, not only specifically to inner ear function, but also to neurocognitive processes.”

“Humans have developed the perception, production and processing of sounds into the art of music. A genetic contribution to these skills of musical aptitude has long been suggested,” the researchers note in the study. Using a genome-wide scan, researchers evaluated 767 individuals “for the ability to discriminate pitch (SP), duration (ST) and sound patterns (KMT), which are primary capacities for music perception.” The study was published in Molecular Psychiatry.

Previously: Music that comes straight from the soul…er, DNA
Photo by Kathleen Tyler Conklin

Aging, Genetics, Neuroscience, Research, Sleep, Stanford News

Restless legs syndrome, most common in old age, appears to be programmed in the womb

Restless legs syndrome, most common in old age, appears to be programmed in the womb

Restless legsWhile the sleep disorder called “restless legs syndrome” is more typical of older than younger people, it looks as though it’s programmed in the womb. And a group led by Stanford neurologist Juliane Winkelmann, MD, has pinpointed for the first time the anatomical region in the brain where the programming takes place.

Restless legs syndrome, or RLS, is just what it sounds like: a pattern of unpleasant sensations in the legs and the urge to move them. It has been described as a feeling similar to the urge to yawn, except that it’s situated in the legs or arms instead of the upper torso and head.

Estimates vary, but something on the order of one in ten Americans has RLS. Women are twice as likely as men, and older people more likely than young people, to have it. This urge to move around comes in the evening or nighttime, and can be relieved only by – wait for it – moving around. Needless to say, that can cause sleep disturbances. In addition, RLS can lead to depression, anxiety and increased cardiovascular risk.

Very little is known about what actually causes RLS, although it’s known to be highly heritable. Although a number of gene variants (tiny glitches in a person’s DNA sequence) associated with the condition have been discovered, each by itself appears to contribute only a smidgeon of the overall effect, and nobody knows how.

Winkelmann has been exploring the genetic underpinnings of RLS at length and in depth. In a just-published paper in Genome Research, she and her colleagues have shown that one gene variant in particular depresses the expression of a protein involved in organ development and maintenance. The DNA abnormality Winkelmann’s team zeroed in on occurs not on the gene’s coding sequence – the part of the gene that contains the recipe for the protein for which the gene is a blueprint – but rather on a regulatory sequence: a part of the gene that regulates how much of that protein (in this case, the one involved in organ development and maintenance) gets made, and when.

The kicker (pardon my pun) is that the regulatory sequence in question seems to be active only during early brain development and only in a portion of brain that is destined to become the basal ganglia, a brain region well known to be involved in movement.

“Minor alterations in the developing forebrain during early embryonic development are probably leading to a predisposition in the [basal ganglion],” Winkelmann says. “Later in life, during aging, and together with environmental factors, these may lead to the manifestation of the disease.”

(Wondering if you’ve got RLS? Check this out.)

Previously: National poll reveals sleep disorders, use of sleeping aids among ethnic groups, Caucasian women most likely to have restless leg syndrome
Photo by Maxwell Hamilton

Stanford Medicine Resources: