Published by
Stanford Medicine

Author

Imaging, Research, Stanford News, Stroke, Technology

Image-interpretation software could open window of treatment for stroke

Image-interpretation software could open window of treatment for stroke

open windowRestoring blood flow to the brain quickly after a stroke is key to damage control as well as to optimal recovery. But restoring blood flow to brain tissue that is already dead can cause problems, like swelling and hemorrhage.

That makes the treatment of choice – an intravenous dose of a substance called tPA, which dissolves clots – a double-edged sword. The consensus in the medical community is that tPA is not a good idea once 4-1/2 hours have elapsed since a patient has suffered a stroke.

But the consensus is based on averages, derived from numerous studies. Clinicians have tended to treat that 4-1/2 hour time-point as analogous to a window slamming shut. Yet every stroke, and every patient who experiences one, is unique.

A new study published in the New England Journal of Medicine joins three earlier ones that show improved results when tPA administration is combined with the insertion of a device – a so-called stent retriever – that can mechanically break up clots in the brain.

Even more exciting, two of the four studies, including the new one, employed software called RAPID – designed and developed at Stanford at the instigation of Stanford neurologist Greg Albers, MD – that quickly interprets brain scans of patients and helps clinicians decide which patients will benefit from supplementing the standard intravenous tPA infusion with the stent retrieval procedure. In both of these two studies, substantial majorities of patients selected as good candidates for the combination had extremely high rates of solid recovery as measured three months after their stroke – the best results ever obtained in stroke studies.

Albers, who is also one of the co-authors of the new NEJM study, hopes to move stroke care away from the clock on the wall and instead focus on a biological clock – what the brain image shows to be going on inside this patient’s brain, now – so that each patient’s care can be individualized and optimized. It could turn out that for some patients, 4-1/2 hours after a stroke is already too late for aggressive clot-busting treatment, while for others the window remains wide open for 6, 7, 8 hours or longer.

Previously: Targeted stimulation of specific brain cells boosts stroke recovery in mice, Calling all pharmacologists: Stroke-recovery mechanism found, small molecule needed and Stanford neuroscientists uncover potential drug treatment for stroke
Photo by glasseyes view

Neuroscience, Research, Sleep, Stanford News

New findings on exactly why our “idle” brains burn so much fuel

New findings on exactly why our "idle" brains burn so much fuel

1959 Cadillac

“The human brain is a greedy organ,” I wrote in my release describing a new Stanford study before elaborating:

Accounting for only 2 percent of the body’s weight, it consumes 20 percent of the body’s energy. Yet the rate at which the brain gobbles glucose (the fuel our brain cells run on) barely budges when we cease performing a physical or mental activity. Even at rest, the brain seems engaged in a blizzard of electrical activity, which neuroscientists have historically viewed as useless “noise.”

The study, which appears today in in Neuron, sheds light on why the brain paradoxically appears to exhaust so much energy in what at first glance seems akin to the idling of a car’s engine. Although you wouldn’t know it from just staring at it, the human brain is a complicated orchestra of electrical circuits constantly humming along with one another over the comparatively long distances that separate one part of the organ from another.

Over the past decade, neuroscientists using brain-imaging methods have identified dozens of distributed, collaborative clusters of brain regions working in concert and dedicated to various mental activities from solving math problems to recalling what one ate for breakfast.

Now a team led by Stanford neuroscientist Josef Parvizi, MD, PhD, has tracked the electrical activity within and between these simultaneously pulsing clusters (or, in Neurospeak, “networks”) with more precision than has previously been possible, and shown that these closely coordinated firing patterns persist even during sleep. This, in turn, may go a long way to explaining why when it comes to how fast the brain guzzles energy, the most intense thoughts, emotions or actions on our part barely budge the needle.

In their study, Parvizi and his colleagues were able to dig deeper than brain-imaging studies can usually go, because they could directly record electrical activity in selected areas in living human subjects’ brains.

The areas in question are distinct parts of a well-studied brain network called the default mode network, which is perhaps the most energetic of the dozens that have so far been discovered. That’s because the default mode network is most active when a person is at rest — lying still with eyes closed or just staring off into space  — or is retrieving an autobiographical memory (“What did I eat for breakfast?”).

Parvizi and his associates showed that the same pattern of coordinated electrical activity observed in the default mode network regions when experimental subjects were performing an autobiographical-memory task persisted even when those individuals were sound asleep.

It adds up to this, Parvizi told me: “The vast amount of energy consumption by our brain is due to its spontaneous activity at all times when we are not consciously involved in a specific task.”

It may be that, all through the night, the brain’s circuits are talking to each other, taking each other’s measure, and staying tuned for optimal function when day breaks. An idling engine puts you just one gas-pedal pump away from a fast take-off.

Previously: In a human brain, knowing a human face and naming it are separate worries, Mind-reading in real life: Study shows it can be done (but they’ll have to catch you first), We’ve got your number: Exact spot inbrainwhere numeral recognition takes place revealed, Metamorphosis: At the push of a button, a familiar face becomes a strange one and Why memory and math don’t mix: They require opposing states of the same brain circuitry
Photo by Don O’Brien

Aging, Immunology, Infectious Disease, Research, Stanford News

Frenemies: Chronic cytomegalovirus infection boosts flu vaccination efficacy (IF you’re young)

Frenemies: Chronic cytomegalovirus infection boosts flu vaccination efficacy (IF you're young)

cheapo boost“The enemy of my enemy is my friend.” This phrase, or at least the thinking it embodies, is at least 2,400 years old. So, there must be something to it, right?

Of course, it’s arguably a vast oversimplification. The more nuanced and much newer term “frenemy,” dating back merely to the early 1950s, is more apt in the case of infection by the microbe known as cytomegalovirus (CMV, for short). If the name is unfamiliar, brace yourself: You’ve probably already been introduced. It’s ubiquitous.

“Between 50 percent and 80 percent of adults in the United States have had a CMV infection by age 40,” states a page on the National Institutes of Health’s website. (Worldwide, the proportion of people infection exceeds 90 percent.) Once CMV is in a person’s body, it stays there for life,” the page soberly adds.

For the most part in healthy people, CMV pretty much sits there inside of cells (particularly in the salivary glands), pretty much biding its time and getting slapped down by the immune system if it tries to act up.

On the other hand, the virus can cause serious trouble if you’re immune-compromised: say, getting a bunch of immune-suppressing drugs pending or after a transplantation operation, or carrying another virus, the infamous immune-deficiency-causing HIV (which as far as we know is nothing but an enemy, plain and simple.)

But in a new study published in Science Translational Medicine, Stanford immunology expert Mark Davis, PhD, and his colleagues show that carriers of CMV mount a more robust immune response to seasonal influenza vaccinations, increasing the chances that the annual vaccine will be more effective in those people.

That’s the good news. The not-so-great news is that this only holds for young people (20-30 years old), not the older ones (age 60 and up) who could really use a boost: The older you get, it’s well known, the less effective the standard seasonal flu vaccine is in helping you fight off an influenza infection.

Experimenting with mice, Davis and his associates went a step farther. They actually infected the animals with influenza itself. Sure enough, young mice who were carrying CMV fought off the bug better than the non-infected mice did.

That’s the good news. The not-so-great news is that the old mice didn’t.

And although the study didn’t say so, one wonders whether in young people whose immune systems are going strong, that extra rocket fuel CMV seems to provide may have a dark side, for example a tendency to autoimmunity. Women’s immune systems tend to be more robust than those of men (very possibly due to the effects of testosterone, as Davis and his crew found a little over a year ago. And they have several times the rate of many autoimmune diseases that men do.

Previously: In human defenses against disease, environment beats heredity, study of twins shows, Why do flu shots work in some but not others? Stanford researchers are trying to find out, In men, a high testosterone count can mean a low immune response and Mice to men: Immunological research vaults into the 21st century
Photo by Joe Lillibridge

Immunology, Microbiology, Research, Stanford News

Drugs for bugs: Industry seeks small molecules to target, tweak and tune up our gut microbes

Drugs for bugs: Industry seeks small molecules to target, tweak and tune up our gut microbes

bacterial cytoplasmMy first encounter with microbiologist Justin Sonnenburg, PhD, came when I was researching “Caution: Do Not Debug,” an article I wrote five years ago for Stanford Medicine about the astonishing microbiotic superorganism that beats within the human gut.

According to the Human Microbiome Project, the typical healthy person is inhabited with trillions of intestinal microbes. A person typically hosts 160 or so species of gut bacteria. This bug collection carries its own “shadow genome” consisting of hundreds of times as many genes, in all, than our own measly 20,000 or so human ones.

In exchange for the three square meals a day we provide them, our microbial moochers do lots of good things: From my article:

[O]ur commensal microbes work hard for their living. They synthesize biomolecules that manipulate us in ways that are helpful to both them and us. They produce vitamins, repel pathogens, trigger key aspects of our physiological development, educate our immune system, help us digest our food and for the most part get along so well with us and with one other that we forget they’re there.

Since I wrote that piece, the list of microbial good deeds has continued to grow. As Sonnenburg pointed out recently in a review article in CELL Metabolism, “Starving our Microbial Self,” our resident microbes are producing hundreds or thousands of little drug-like compounds. For example: Short-chain fatty acids, generated by our gut bacteria from starches and fiber in our diet, downregulate inflammation.

Quoted in a just-published feature in Nature Biotechnology, “Drugging the Microbiome,” Sonnenburg elaborates:

Might a lack of dietary fiber lead directly to autoimmune and inflammatory diseases? That’s the view of Justin Sonnenburg, a Stanford microbiologist. “A reduction in short-chain fatty acid production… is what happens when you get rid of dietary fiber, and [leads to] increasing inflammatory responses of the host immune system,” he says. “And it’s this simmering state of inflammation that the Western immune system exists in that’s really the cause of all the diseases that we’ve been talking about. … You can just imagine that if you get rid of these important regulatory molecules, and the immune system becomes a little bit pro-inflammatory across a large population, you’re going to see increases in things like cancer, heart disease, allergies, asthma and inflammatory bowel disease.”

While they’re indispensable, our gut microbes can do bad things, too. Research has implicated them in the production of certain metabolites implicated in deleterious effects, with potential involvement in conditions ranging from heart disease to autism to Parkinson’s to colon and liver cancer, according to the Nature Biotechnology feature.

Either way, it’s going to be well worth our while to learn everything we can about the details of the ecosystem of one-celled creatures who call us “home.”

Previously: Civilization and its dietary (dis) contents: Do modern diets starve out our gut-microbial community?, The future of probiotics and Researchers manipulate microbes in the gut
Photo by Duncan Hull

Chronic Disease, Immunology, Infectious Disease, Neuroscience, Research, Stanford News

ME/CFS/SEID: It goes by many aliases, but its blood-chemistry signature is a giveaway

ME/CFS/SEID: It goes by many aliases, but its blood-chemistry signature is a giveaway

signature

It’s the disease that dare not speak its name without tripping over one of its other names. Call it what you will – chronic fatigue syndrome (CFS), myalgic encephalomyelitis (ME) or its latest, Institute of Medicine-sanctioned designation, systemic exertion intolerance disease (SEID). It’s very real, affecting between 1 million and 4 million people in the United States alone, according to Stanford infectious-disease sleuth Jose Montoya, MD, who has closely followed more than 200 SEID patients for several years and done extensive testing on these patients in an effort to find out what’s causing their condition.

Different authorities have quoted different numbers regarding those with SEID. The name-calling and number-assigning squishiness stems from the fact that beyond its chief defining symptom – overwhelming, unremitting exhaustion lasting for six months or longer – it’s tough to pin down. Additional symptoms can range from joint and muscle pain, incapacitating headaches or food intolerance to sore throat, lymph-node enlargement, gastrointestinal problems, abnormal blood-pressure or hypersensitivity to light, noise or other sensations.

Research into the hows and whys of SEID has been plagued by the inability to establish any characteristic biochemical or neuroanatomical underpinnings of the disorder. Although many viral suspects have been interrogated, no accused microbial culprit has been indicted. To this day, there are no valid laboratory tests for diagnosing SEID.

But a burst of insight into SEID’s physiological substrate came only months ago when Stanford neuroradiologist Mike Zeineh, MD, PhD, working with patients from Montoya’s registry, found that they shared a pattern of white-matter loss in specific parts of the brain. The discovery drew a great deal of attention in the press as well as the CFS community. (See our news release about that study for details.)

Now a high-profile, multi-institution team including Montoya has published a study in Science Advances showing yet another physiological basis for a diagnosis of SEID: a characteristic pattern, or “signature,” consisting of elevated levels of various circulating immune-signaling substances in the blood.

Continue Reading »

Applied Biotechnology, Cancer, Evolution, Immunology, Research, Stanford News

Corrective braces adjust cell-surface molecules’ positions, fix defective activities within cells

Corrective braces adjust cell-surface molecules' positions, fix defective activities within cells

bracesStanford molecular and cellular physiologist and structural biologist Chris Garcia, PhD, and his fellow scientists have tweaked together a set of molecular tools that work like braces of varying lengths and torque to fix things several orders of magnitude too small to see with the naked eye.

Like faulty cell-surface receptors, for instance, whose aberrant signaling can cause all kinds of medical problems, including cancer.

Cell-surface receptors transmit naturally occurring signals from outside cells to the insides of cells. Molecular messengers circulating in the blood stumble on receptors for which they’re a good fit, bind to them, and accelerate or diminish particular internal activities of cells, allowing the body to adjust to the needs of the minute.

Things sometimes go wrong. One or another of the body’s various circulating molecular messengers (for example, regulatory proteins called cytokines) may be too abundant or scarce. Alternatively, a genetic mutation may render a particular receptor type overly sluggish, or too efficient. One such mutation causes receptors for erythropoietin – a cytokine that stimulates production of certain blood-cell types – to be in constant overdrive, resulting in myeloproliferative disorders. Existing drugs for this condition sometimes overshoot, bringing the generation of needed blood-cell types to a screeching halt.

Garcia’s team took advantage of the fact that many receptors – erythropoietin receptors, for example – don’t perform solo, but instead work in pairs. In a proof-of-principle study in Cell, Garcia and his colleagues made brace-like molecular tools composed of stitched-together antibody fragments (known in the trade as diabodies). They then showed that these “two-headed beasts” can selectively grab on to two members of a mutated receptor pair and force the amped-up erythropoietin receptors into positions just far enough apart from, and at just the right angles to, one another to slow down their hyperactive signaling and act like normal ones.

That’s a whole new kind of therapeutic approach. Call it “cellular orthopedics.”

Previously: Souped-up super-version of IL-2 offers promise in cancer treatment and Minuscule DNA ring tricks tumors into revealing their presence
Photo by Zoe

Applied Biotechnology, Bioengineering, Cancer, Genetics, Research, Stanford News

Minuscule DNA ring tricks tumors into revealing their presence

Minuscule DNA ring tricks tumors into revealing their presence

cool minicirclesAn animal study just published in Proceedings of the National Academy of Sciences shows how, in the not-distant future, doctors may be able to not only detect tumors early in humans, but also monitor the effectiveness of cancer drugs in real time, guide clinical trials of new drugs, and even screen entire populations of symptom-free people for nascent tumors that could have otherwise slipped under the radar.

The potential is huge. And the principal investigator, Sam Gambhir, MD, PhD, is credible: He chairs Stanford’s radiology department, directs the Canary Center at Stanford for Cancer Early Detection and has authored or co-authored nearly 600 peer-reviewed research publications.

From my news release about the study:

Imagine: You pop a pill into your mouth and swallow it. It dissolves, releasing tiny particles that are absorbed and cause only cancerous cells to secrete a specific protein into your bloodstream. Two days from now, a finger-prick blood sample will expose whether you’ve got cancer and even give a rough idea of its extent. That’s a highly futuristic concept. But its realization may be only years, not decades, away.

The key to early cancer detection lies in finding valid biomarkers: substances whose presence in a person’s blood or urine flags a probable tumor. (High blood levels of the molecule known as PSA, for example, can signify prostate cancer.) But although various tumor types indeed secrete characteristic substances into the blood, these same substances typically are made in healthy tissues, too, albeit usually in smaller amounts. So a positive test result for, say, PSA doesn’t necessarily mean the person has cancer. Contrariwise, a small tumor just may not secrete enough of the trademark substance to be detectable.

Gambhir’s team appears to have found a way to force any of numerous tumor types to produce a biomarker whose presence in the blood unambiguously signifies cancer, because no adult tissues – cancerous or otherwise – would normally be making it. This particular substance is a protein naturally present in human embryos as they’re forming and developing, but absent in adults.

The scientists designed a genetic construct, called a DNA minicircle, that contains a single gene coding for the telltale substance. DNA minicircles are tiny, artificial, single-stranded DNA rings about 4,000 nucleotides in circumference – roughly one-millionth as long as the strand that you’d get if you stretched the DNA in all 23 chromosomes of the human genome end to end.

Gambhir and his colleagues rigged their minicircles so that this sole gene would be “turned on” only inside cancer cells. (For more details on how to do this, please see my release.) They injected the minicircles into mice who had small tumors and mice who didn’t. Within 48 hours, a simple blood test indicated the presence of the biomarker in the blood of mice with tumors, but not in the blood of the tumor-free mice.The bigger the tumor volume, the more of the biomarker in the blood.

The technique will likely apply to a broad range of cancers, and can possibly be modified to help pinpoint budding tumors’ location in the body.

Previously: Nano-hitchhikers ride stem cells into heart, let researchers watch in real time and weeks later, Nanoparticles home in on human tumors growing in mice’s brains, increase accuracy of surgical removal and Nanomedicine moves one step closer to reality
Photo by Jim Strommer

Imaging, Mental Health, Neuroscience, NIH, Research, Stanford News

Study: Major psychiatric disorders share common deficits in brain’s executive-function network

Study: Major psychiatric disorders share common deficits in brain's executive-function network

marble brainPsychiatric disorders, traditionally distinguished from one another based on symptoms, may in reality not be as discrete as we think.

In a huge meta-analysis just published in JAMA Psychiatry, Stanford neuroscientist and psychiatrist Amit Etkin, MD, PhD, and his colleagues pooled the results from 193 different studies. This allowed them to compare brain images from 7,381 patients diagnosed with any of six conditions – schizophrenia, bipolar disorder, major depression, addiction, obsessive-compulsive disorder, and a cluster of anxiety syndromes – to one another, as well as to brain images from 8,511 healthy patients.

Compared with healthy brains, patients in all six psychiatric categories showed a loss of gray matter in each of three separate brain structures. These three areas, along with others, tend to fire in synchrony and are known to participate in the brain’s so-called “executive-function network,” which is associated with high-level functions including planning, decision-making, task-switching, concentrating in the face of distractions, and damping counterproductive impulses.

The findings call into question a longstanding tendency to distinguish psychiatric disorders chiefly by their symptoms

(“Gray matter” refers to information-processing nerve-cell concentrations in the brain, as opposed to the “white matter” tracts that, like connecting cables, shuttle information from one part of the brain to another.)

As Etkin told me when I interviewed him for the news release we issued on this study, “these three structures can be viewed as the alarm system for the brain.” More from our release:

“They work together, signaling to other brain regions when reality deviates from expectations – that something important and unpredicted has happened, or something important has failed to happen.” That signaling guides future behavior in directions more likely to obtain desired results.

The studies of psychiatric patients that Etkin’s team employed all used a technique that yields high-resolution images of the brain’s component structures but can say nothing about how or when these structures work or interact with one another. However, that kind of imaging data was available for the healthy subjects. And, on analysis, those healthy peoples’ performance on classic tests of executive-function (such as  asking the test-taker to note the color of the word “blue,” displayed in a color other than blue, after seeing it briefly flashed on a screen) correlated strongly with the volume of gray matter in the three suspect brain areas, supporting the idea that the anatomical loss in psychiatric patients was physiologically meaningful.

The findings call into question a longstanding tendency to distinguish psychiatric disorders chiefly by their symptoms rather than their underlying brain pathology – and, by implication, suggest that disparate conditions may be amenable to some common remedy.

As National Institute of Mental Health Director Thomas Insel, MD, told me in an interview about the study, the Stanford investigators “have stepped back from the trees to look at the forest and see a pattern in that forest that wasn’t apparent when you just look at the trees.”

Previously: Hope for the globby thing inside our skulls, Brain study offers intriguing clues toward new therapies for psychiatric disorders and Study shows abnormalities in brains of anxiety-disorder patients
Photo by Philippe Put

Aging, Immunology, Neuroscience, Research, Stanford News, Stroke

Can immune cells’ anomalous presence in brain explain delayed post-stroke dementia?

Can immune cells' anomalous presence in brain explain delayed post-stroke dementia?

bees in the bonnetAbout every 40 seconds, someone in the United States has a stroke. About one in three of those people will eventually suffer from dementia if they live long enough, even if there’s been no initial damage to brain structures involved in memory and cognition. That’s a mystery.

In a recent study in The Journal of Neuroscience, Stanford neurologist and stroke expert Marion Buckwalter, MD, PhD, points a bony scientific finger at a major likely reason why having a stroke doubles a person’s risk of incurring dementia within the next decade.

The culprit, surprisingly, seems to be a type of normally very beneficial immune cells that under ordinary circumstances have no business being in the brain. These trespassers, called B cells, are best known for generating antibodies that fight off invading pathogens. As I wrote in my release on the new study:

The antibodies that B cells produce are normally of great value to us. They circulate throughout blood and lymph, and bind to microbial invaders, gumming up the pathogens’ nefarious schemes and marking them for destruction by other immune cells. Occasionally, B cells wrongly begin generating antibodies that bind to the body’s own healthy tissues, causing certain forms of autoimmune disease, such as rheumatoid arthritis. Rituxan, a drug approved by the Food and Drug Administration for this condition, is actually an antibody itself: Its target is a protein found on the surface of every B cell. Use of this drug depletes B cells in the body, relieving the symptoms of rheumatoid arthritis and other B-cell-mediated disorders.

The blood-brain barrier, which tightly controls what enters and what leaves the brain, can be disrupted by a stroke, permitting the anomalous appearance of B cells there. Buckwalter and her colleagues showed that in mice experiencing strokes, the affected brain region – immune-cell-free at least one week later – started filling up with B cells until, at seven and twelve weeks post-stroke, there were “tons” of them, she told me. Around the same time, these mice started showing signs of dementia that hadn’t been at all evident a mere week after the stroke.

But in mice of a strain that is genetically incapable of producing B cells, no such cognitive loss occurred. Not only that, but giving plain old ordinary mice Rituxan five days after a stroke prevented this post-stroke dementia.

Then Buckwalter and her team looked at preserved, autopsied brain-tissue samples from people who had had stroke and dementia. Once again, they observed inordinate numbers of B cells in the majority of these brains, suggesting that humans, too, can experience late but lasting infiltration of rampaging B cells into our brains after a stroke.

So maybe giving a Rituxan-like B-cell-depleting compound to these people within that first week after their stroke could stave off dementia.

This wouldn’t by advisable for all stroke patients. You don’t want to wipe out somebody’s B cells (usually, they’re good guys) unless they are causing trouble. And, as seen in the autopsied tissue samples, not all stroke sufferers’ brains fall into that category.

But, Buckingham noted, Rituxan or something like it could work a double shift as both a therapeutic and a diagnostic. Rituxan pretty much binds only to B cells (a prelude to killing them), so tagging the drug with an imaging agent that could be picked up by, say, an MRI scan might tell clinicians which stroke patients have, or don’t have, B’s in their bonnets.

Previously: Targeted stimulation of specific brains cells boosts stroke recovery in mice, Calling all pharmacologists: Stroke-recovery mechanism found, small molecule needed and Brain sponge: Stroke treatment may extend time to prevent brain damage
Photo by _annamo

Aging, Genetics, Immunology, Infectious Disease, Research, Stanford News

In human defenses against disease, environment beats heredity, study of twins shows

In human defenses against disease, environment beats heredity, study of twins shows

Pfc. Lane Higson and Pfc. Casey Higson, identical twins serving in Iraq with the Enhanced Combat Aviation Brigade, 1st Infantry Division. The twins, natives of Myrtle Beach, S.C., joined the Army together and have not separated since.I’m one of those people who’ve paid to have their genomes analyzed for the purpose of getting a handle on susceptibility to this or that disease as time goes by. So it was with great interest that I came across a new study of twins conducted by immunologist Mark Davis, PhD, and fellow Stanford investigators. The study, published in CELL, shows that our environment, more than our heredity, plays the starring role in determining the state of our immune system, the body’s primary defense against disease. This is especially true as we age.

Improving gene-sequencing technologies have focused attention on the role of genes in diseases. But the finding that the environment is an even greater factor in shaping our immune response should give pause to anyone who thinks a whole-genome test is going to predict the course of their health status over a lifetime.

“The idea in some circles has been that if you sequence someone’s genome, you can tell what diseases they’re going to have 50 years later,” Davis told me when I interviewed him for a news release I wrote on the study. But, he noted, the immune system has to be tremendously adaptable in order to cope with unpredictable episodes of infection, injury and tumor formation.

Davis, who heads Stanford’s Institute for Immunity, Transplantation and Infection, is worth taking seriously. He’s made a number of major contributions to the field of immunology over the last 30 years or so.  (Not long ago, I wrote an article about one of those exploits for Stanford Medicine.)

To find out whether the tremendous differences observed between different people’s immune systems reflec tunderlying genetic differences or something else, Davis and his colleagues compared members of twin pairs to one another. Identical twins inherit the same genome, while fraternal twin pairs are no more alike genetically than regular siblings, on average sharing 50 percent of their genes. (Little-known fun factoid: The percentage can vary from 0 to 100, in principle, depending on the roll of the chromosomal dice. But it typically hovers pretty close to 50 percent, just as rolling real dice gives you a preponderance of 6s, 7s, and 8s. Think of a Bell curve.)

Because both types of twins share the same in utero environment and, usually, pretty close to the same childhood environment as well, they make great subjects for contrasting hereditary versus environmental influence. (If members of identical-twin pairs are found to be no more alike than members of fraternal-twin pairs with respect to the presence of some trait, that trait is considered to lack any genetic influence.)

In all, the researchers recruited 78 identical-twin pairs and 27 pairs of fraternal twins and drew blood from both members of each twin pair. That blood was hustled over to Stanford’s Human Monitoring Center, which houses the latest immune-sleuthing technology under a single roof. There, the Stanford team applied sophisticated laboratory methods to the blood samples to measure more than 200 distinct immune-system cell types, substances and activities.

Said Davis: “We found that in most cases – including your reaction to a standard influenza vaccine and other types of immune responsiveness – there is little or no genetic influence at work, and most likely the environment and your exposure to innumerable microbes is the major driver.”

It makes sense. A healthy human immune system has to continually adapt to its encounters with hostile pathogens, friendly gut microbes, nutritional components and more.

“The immune system has to think on its feet,” Davis said.

Previously: Knight in lab: In days of yore, postdoc armed with quaint research tools found immunology’s Holy Grail, Deja vu: Adults’ immune systems “remember” microscopic monsters they’ve never seen before and Immunology escapes from the mouse trap
Photo by DVIDSHUB

Stanford Medicine Resources: