Skip to content

Studying the drivers of metastasis to combat cancer

Today we're launching Biomed Bites, a weekly series created to highlight some of Stanford Medicine's most compelling research and introduce readers to promising scientists from across the basic and clinical sciences.

One might not think there's much of a connection between grapes and cancer cells, but Amato Giaccia, PhD, has found some similarities. "The tumor microenvironment is very analogous to the microenvironment you would have in Napa Valley, where different types of grapes grow in different areas depending on the richness of the soil and the different climate and weather that exist," explains the Stanford radiation oncologist and cancer biologist in the video above. "In a similar matter, tumors require different environments for them to be able to grow and… metastasize."

Giaccia and his colleagues study the genetic and epigenetic regulators of metastasis, and their work could lead to the development of therapeutics that inhibit or eradicate the process, which contributes to 90 percent of cancer-related deaths. "Understanding the drivers of metastasis and how to best target them is going to have a major impact on cancer survival and mortality in the future," Giaccia says.

Learn more about Stanford Medicine's Biomedical Innovation Initiative and about other faculty leaders who are driving forward biomedical innovation here.

Previously: Cellular culprit identified for invasive bladder cancer, according to Stanford study, Potential anti-cancer therapy starves cancer cells of glucose and Nomadic cells may hold clues to cancer’s spread
Photo in featured entry box by Lee Coursey/Flickr

Popular posts

Category:
Biomedical research
How do the new COVID-19 vaccines work?

The Pfizer and Moderna COVID-19 vaccines are the first to use the RNA coding molecule to prompt our bodies to fight the virus. Here's how they work.