Skip to content

Building a bridge between education and neuroscience

3537327425_d0c519ed1e_zIt wasn't long ago that my kids could barely identify all the letters in the alphabet and now I have to yell at them to put down books and eat dinner. That transition, from identifying symbols to learning how to interpret them in math and reading, is something that involves creating new pathways in the brain.

Neuroscientists have long known that those changes must be taking place in the brain, but only recently has brain imaging been good enough to reveal where and how those changes are taking place. With that advance, neuroscientists and faculty in the School of Education are now starting to work together to better understand the changes and also come up with ways of using what's learned in neuroscience to develop ways of helping kids who fall behind.

I recently wrote about a new education professor, Bruce McCandliss, PhD, who is pulling together the interdisciplinary team of faculty from across Stanford to build the educational neuroscience program here. From my story:

In one set of experiments, McCandliss used a type of brain imaging that reveals connections or tracts of neurons to look at the brains of kids who were good readers and others who showed signs of dyslexia. He found that the kids who were better readers had stronger brain connections in that region.

"There is a profound relationship between the way a person's brain is organized and how well that person masters abstract intellectual skills, such as reading or mathematics," he said.

In a follow-up study, he and a team that included Allan Reiss, the Howard C. Robbins Professor of Psychiatry and Behavioral Sciences and professor of radiology, found that kids with dyslexia who activate a particular brain region when trying to read went on to make much greater improvements in their reading ability. Kids who did not activate that region made very little reading gain after the age of 14.

"The hope is that by understanding the nature of these differences we might be able to tailor interventions for those individuals," McCandliss said.

The people I talked with for my story all said that we have many years to go before discoveries made in the lab start showing up as personalized learning in the classroom. Still, it's nice to think that some of the kids who are struggling with reading or math might one day be able to get help that's based on what's actually known about learning in the brain.

Previously: Learning how we learn to read, Study shows brain scans could help identify dyslexia in children before they start to read and Stanford study furthers understanding of reading disorders
Photo by John Morgan

Popular posts

Category:
Nutrition
Intermittent fasting: Fad or science-based diet?

Are the health-benefit claims from intermittent fasting backed up by scientific evidence? John Trepanowski, postdoctoral research fellow at the Stanford Prevention Research Center,weighs in.